Method, device and computer device for decoupling anisotropic elastic wave

    公开(公告)号:US11953633B1

    公开(公告)日:2024-04-09

    申请号:US18492896

    申请日:2023-10-24

    CPC classification number: G01V1/008 G01V1/284

    Abstract: This disclosure relates to the technical field of exploration geophysics, in particular to a method, a device, and a computer device for decoupling anisotropic elastic wave. The method includes: determining a set of Thomsen parameters included in an anisotropic model based on a received to-be-decomposed wave field decomposition request; transforming the set of Thomsen parameters to obtain a set of initial elastic parameters; performing S-wave and P-wave velocities separation processing for the set of initial elastic parameters to obtain a set of target P-wave elastic parameters and a set of target S-wave elastic parameters; and substituting those into the anisotropic model to process the to-be-decomposed wave field and obtain a target P-wave matrix and a target S-wave matrix. The process of decomposing S-wave and P-wave fields is simplified and the calculation cost is reduced according to the embodiments of this disclosure.

    Fast forward method and system for gamma-ray logging of highly-deviated and horizontal wells preliminary class

    公开(公告)号:US11940590B1

    公开(公告)日:2024-03-26

    申请号:US18470946

    申请日:2023-09-20

    CPC classification number: G01V5/06 E21B49/00

    Abstract: Through analysis on an effective detection space of a gamma detector, a one-dimensional equivalent longitudinal contribution coefficient (varying with a distance between a formation and the detector) of a natural gamma-ray flux received by the gamma detector under the condition that the formation and a wellbore are orthogonal is obtained in the effective detection space, and then a corresponding function expression is given by fitting. An integral of a gamma-ray flux received by the detector under the condition of a deviated well is converted into a one-dimensional equivalent integral problem under the condition of a straight well, so as to achieve the fast forward of natural gamma-ray logging of the formation under the conditions of highly-deviated and horizontal wells. This simplified fast forward algorithm can replace a gamma forward method of spherical spatial-division integrals in parallel sedimentary formations, reduce a space-time complexity of algorithms, and improve a calculation efficiency.

    Method for Hydrotreating and Recycling Waste Lubricating Oil

    公开(公告)号:US20240010944A1

    公开(公告)日:2024-01-11

    申请号:US18036192

    申请日:2022-01-10

    Abstract: A method for hydrotreating and recycling waste lubricating oil, the method comprising the two steps of slurry bed pre-hydrotreatment and deep hydrotreatment, specifically as follows: mechanical impurities are removed from waste lubricating oil, and then the oil is subjected to flash distillation to separate free water and a portion of light hydrocarbons; a bottom product of the flash distillation column is mixed with hydrogen and a self-sulfurizing oil-soluble transition metal catalyst, and then enters a slurry bed reactor for pre-hydrotreatment; a liquid product obtained by performing separation on a reaction effluent is subjected to hydrocyclone separation and solvent washing to remove solid residue, and then a pre-treated lubricating oil component is obtained; said component is mixed with hydrogen and then enters a hydrofining reactor, an isomerization-dewaxing reactor, and a supplementary refining reactor, connected in series, for hydrotreatment; and the reaction products are separated to obtain high-quality naphtha, diesel oil and a lubricating base oil. The method of the present invention has such advantages as simple processing procedures, a high oil liquid yield, good lubricating oil base oil quality, and can implement full-fraction resource utilization of waste lubricating oil. In addition, the oil-soluble catalyst features simple dispersion, no need for vulcanization, a small catalyst adding amount, high low-temperature hydrogenation activity, is capable of effectively preventing the coking that could occur during a process of preheating the waste lubricating oil, and ensures long-term stable operation of the device.

    GROUND TESTING DEVICE FOR STABILIZED PLATFORM OF ROTARY STEERABLE DRILLING TOOL

    公开(公告)号:US20230408368A1

    公开(公告)日:2023-12-21

    申请号:US18242684

    申请日:2023-09-06

    CPC classification number: G01M7/025 G01M7/045 G01M7/022 E21B7/04

    Abstract: The present invention belongs to the technical field of oil field drilling, and relates to a ground testing device for a stabilized platform of a rotary steerable drilling tool. The ground testing device includes: a first supporting member and a second supporting member that are oppositely arranged, where the second supporting member is provided with a first mounting hole; a drill collar and a drill collar motor mounted outside the first supporting member, where a motor shaft of the drill collar motor penetrates the first supporting member and is connected to the drill collar, and a stabilized platform mounting assembly is arranged inside the drill collar; and a first vibration member connected to the drill collar and a second vibration member arranged in the first mounting hole in a sleeved manner, where an elastic member is arranged between the second vibration member and the second supporting member, and the elastic member is arranged on the second vibration member in a sleeving manner. An end portion of the first vibration member is provided with first vibration teeth, an end portion of the second vibration member is provided with second vibration teeth matching the first vibration teeth, and the second vibration member is provided with a first stop member which matches a second stop member arranged in the first mounting hole. According to the present invention, vibration, interference loading, and high-temperature simulation can be performed, and ground tests of different types of mechanical stabilized platforms are achieved.

Patent Agency Ranking