Abstract:
A method of associating a mobile station to a base station in a wireless communication system comprises transmitting to a serving base station a scanning request message comprising an association indicator. The method also comprises receiving from the serving base station a scanning response message comprising a rendezvous time associated with a neighboring base station for initiating ranging with the neighboring base station, wherein the serving base station communicates an association notification to the neighboring base station, the association notification comprising the rendezvous time. The method also comprises associating with the neighboring base station by transmitting a ranging request after passing of the rendezvous time determined from a transmission time of the scanning response message from the neighboring base station, wherein the rendezvous time is associated with a time the neighboring base station is expected to provide a non-contention based ranging opportunity for the mobile station.
Abstract:
A method of performing a ranging process between a base station and a mobile station in sleep mode in a wireless access system, wherein the base station provides the mobile station with an initial notification of a periodic ranging time that occurs during a sleep time interval and during which the mobile station is to perform the ranging process, the initial notification included in a first message, the first message indicating whether the mobile station should terminate sleep mode to receive downlink data, and wherein the base station provides the mobile station with subsequent notifications of periodic ranging times that occur during the sleep time interval, the subsequent notifications indicated in a second message, the second message transmitted to the mobile station as part of the ranging process such that the mobile station performs a plurality of ranging processes within the sleep time interval.
Abstract:
A method of associating a mobile station to a base station in a wireless communication system comprises transmitting to a serving base station a scanning request message comprising an association indicator. The method also comprises receiving from the serving base station a scanning response message comprising a rendezvous time associated with a neighboring base station for initiating ranging with the neighboring base station, wherein the serving base station communicates an association notification to the neighboring base station, the association notification comprising the rendezvous time. The method also comprises associating with the neighboring base neighboring base station by transmitting a ranging request after passing of the rendezvous time determined from a transmission time of the scanning response message from the neighboring base station, wherein the rendezvous time is associated with a time the neighboring base station is expected to provide a non-contention based ranging opportunity for the mobile station.
Abstract:
A method of providing neighbor base station information via a mobile subscriber station in a broadband wireless access system is disclosed. In providing neighbor base station information (S316) to a serving base station from a mobile subscriber station in a broadband wireless access system, the present invention includes the steps of performing a scanning and a synchronization (S312, S313) on a mobile base station based on information provided from the serving base station (S311) and transmitting the neighbor base station information acquired from the scanning and the synchronization to the serving base station (S316) regardless of a presence or non-presence of a request from the serving base station. Accordingly, the present invention can efficiently transmit the neighbor base station signal intensity and frame information acquired by the mobile subscriber station.
Abstract:
A method of supporting multiple code types in a wireless mobile communication system is disclosed. More specifically, a mobile station (MS) receives a channel descriptor from a base station (BS), wherein the channel descriptor includes at least one burst profile which includes a code type and an interval usage code. Thereafter, the MS, first, recognizes the code type which includes information on coding scheme to be used by the BS or the MS, and recognizes, second, an interval usage code which is used for classifying all data bursts.
Abstract:
A dual modem device is disclosed. The present invention includes a first processor configured to communicate with a first communication network, a second processor configured to communicate with a second communication network, and a subscriber identity module configured to store a user equipment identifier corresponding to the first communication network, at least one authentication parameter corresponding to the first communication network and an authentication algorithm corresponding to the first communication network, the subscriber identity module performing the authentication algorithm corresponding to the first communication network, wherein the subscriber identity module is connected to the second processor. The first communication network is an LTE (long term evolution) communication network. And, the second communication network is an eHRPD (enhanced high-rate packet data) communication network.
Abstract:
A method of supporting a hybrid automatic retransmission request (HARQ) in an orthogonal frequency division multiplexing access (OFDMA) radio access system is disclosed. Preferably, the method comprises receiving a downlink data frame comprising a data map information element and a data burst comprising a plurality of layers, wherein each layer is encoded with a corresponding channel encoder, and wherein the data map information element is configured to support multiple antennas to achieve space time transmit diversity by providing control information associated with each one of the plurality of layers, wherein the control information comprises allocation of acknowledgement status channels corresponding to the plurality of layers, and transmitting in an uplink data frame a plurality of acknowledgement status, each acknowledgement status being associated with whether a corresponding layer of the plurality of layers is properly decoded.
Abstract:
A method of supporting a hybrid automatic retransmission request (HARQ) in an orthogonal frequency division multiplexing access (OFDMA) radio access system is disclosed. Preferably, the method comprises receiving a downlink data frame comprising a data map information element and a data burst comprising a plurality of layers, wherein each layer is encoded with a corresponding channel encoder, and wherein the data map information element is configured to support multiple antennas to achieve space time transmit diversity by providing control information associated with each one of the plurality of layers, wherein the control information comprises allocation of acknowledgement status channels corresponding to the plurality of layers, and transmitting in an uplink data frame a plurality of acknowledgement status, each acknowledgement status being associated with whether a corresponding layer of the plurality of layers is properly decoded.
Abstract:
The present invention relates to allocating data regions in an orthogonal frequency division multiplexing access system. The present invention comprises receiving a message comprising information for locating a data region of a data map allocated to a mobile station identified in the message for transmitting and receiving information, and identifying the data region of the data map allocated to the identified mobile station by reading the received message, wherein the data region is identified independent of identifying data regions of another data map.
Abstract:
A method of performing a ranging process between a base station and a mobile station in sleep mode in a wireless access system, wherein the base station provides the mobile station with an initial notification of a periodic ranging time that occurs during a sleep time interval and during which the mobile station is to perform the ranging process, the initial notification included in a first message, the first message indicating whether the mobile station should terminate sleep mode to receive downlink data, and wherein the base station provides the mobile station with subsequent notifications of periodic ranging times that occur during the sleep time interval, the subsequent notifications indicated in a second message, the second message transmitted to the mobile station as part of the ranging process such that the mobile station performs a plurality of ranging processes within the sleep time interval.