Abstract:
In an apparatus and a method for controlling operation of a compressor, by removing deviation generated by resistance and inductance and removing an error in a stroke estimation value of a compressor, operation of the compressor can be accurately controlled. The apparatus includes a counter electromotive force detector for detecting a counter electromotive force generated at a motor of a compressor. A stroke calculator calculates a stroke estimation value of the compressor on the basis of the counter electromotive force, and a stroke controller controls a stroke of the compressor by varying a voltage applied to the motor on the basis of the calculated stroke estimation value and a stroke reference value.
Abstract:
In a stroke control apparatus of a reciprocating compressor and a method thereof, the stroke control apparatus of the reciprocating compressor includes a reciprocating compressor, a current detecting unit for detecting a current flowing in a motor of the reciprocating compressor, a stroke detecting unit for detecting a piston stroke by using a voltage and a current applied to the motor of the reciprocating compressor, a phase difference detecting unit for detecting a phase difference by receiving the piston stroke from the stroke detecting unit and the motor current from the current detecting unit, an operational frequency determining unit for determining an operational frequency corresponded to an operation region according to the detected phase difference, a frequency/stroke storing unit for storing a piston stroke value by the determined operational frequency, a reference stroke value determining unit for determining a reference stroke value corresponded to the determined operational frequency by using the stroke value pre-stored in the frequency/stroke storing unit, a control unit for comparing the reference stroke value with a present piston stroke value after a certain time point and outputting a stroke control signal according to the comparison result and an inverter for varying an operational frequency and a voltage applied to the motor of the reciprocating compressor according to the stroke control signal of the control unit.
Abstract:
In an operation control apparatus of a compressor, a current, a voltage an d a TDC, etc. applied to a compressor are detected, a speed and a TDC are constantly controlled so as to place an operation point of the compressor within a high efficiency operation region by using a phase difference between each detected values (for example, a phase difference between the current and the voltage), and an operation frequency is varied according to a load variation, accordingly an operation efficiency of the compressor can be improved.
Abstract:
An apparatus and method for operational control of a reciprocating motor compressor, includes performing an operation of the reciprocating motor compressor precisely and accurately. In addition, with the above apparatus and method, the phase difference between a first speed value of the motor (or first TDC value) and current applied to the motor is detected, the second speed value of the motor at the inflection point of the detected phase value (or second TDC value) is detected and stored as a reference value, and the speed of the motor is controlled on the basis of the reference value and the first speed value of the motor (or the first TDC value).
Abstract:
In an apparatus and a method for controlling a compressor, by setting a stroke reference value so as to be smaller than a maximum stroke value in a maximum load state and operating the reciprocating compressor stably, damage of a reciprocating compressor can be prevented, a cost in a motor design can be reduced, and a size of a motor can be decreased in designing of the motor.
Abstract:
Driving controlling apparatus and method for a reciprocating compressor capable of stably driving a reciprocating compressor when a reciprocating compressor is operated or an output capacity of the reciprocating compressor is varied, by matching an impedance of the apparatus to an inductance of a motor, and capable of enhancing an efficiency of the reciprocating compressor. The apparatus comprises an output capacity determining unit for determining an output capacity of a reciprocating compressor; an over-stroke preventing unit for preventing an over-stroke of a motor inside the reciprocating compressor; and an impedance matching unit for matching an inductance of the reciprocating compressor to an impedance of the apparatus.
Abstract:
An apparatus and method for controlling an operation of a linear compressor by detecting a phase difference inflection point at a time point when a phase difference between a current and a stroke is placed within a certain region, and by recognizing the phase difference infection point as a top dead center (TDC)=O. The apparatus for controlling an operation of a linear compressor, comprises: a controlling unit for detecting a phase difference between a current and a stroke, and outputting a frequency varying signal or a phase difference inflection point detecting signal based on the detected phase difference; a phase difference inflection point detecting unit for judging whether to detect a phase difference inflection point or not by the phase difference inflection point detecting signal, and outputting a stroke command value controlling signal based on a result of the judgement; and a stroke command value determining unit for determining a stroke command value based on the stroke command value controlling signal.
Abstract:
A driving controlling apparatus for a linear compressor, comprises: a storing unit for storing a reference phase difference to judge an overload state; and a controlling unit for judging an overload state based on a comparison result between the reference phase difference and a phase difference between a current and a stroke, and controlling a voltage or a current applied to a linear motor based on the judgement result.
Abstract:
The present invention provides a method of controlling a refrigerator, including a main body having a plurality of storage chambers; a plurality of evaporators installed to independently cool the plurality of storage chambers, respectively; a refrigerant control valve for controlling refrigerant introduced into the plurality of evaporators; and a plurality of fans for circulating air of the storage chambers through the evaporators, respectively, the method includes a fan rotation step of, in an evaporator opening mode of the refrigerant control valve, rotating a fan of the plurality of fans, which circulates the air through an evaporator into which the refrigerant is introduced; an evaporator defrost step of, when a consecutive rotating time of the fan is greater than a setting time, operating the refrigerator in a defrost mode of the evaporator into which the refrigerant is introduced; and an evaporator defrost end step of, when a temperature sensed by a defrost sensor of the evaporator that is being defrosted is higher than a return setting temperature after the evaporator defrost step begins, finishing the defrost mode of the refrigerator. Accordingly, the present invention is advantageous in that it can defrost each evaporator efficiently at an exact point of time at which defrosting is required.
Abstract:
An apparatus for controlling an operation of a compressor includes: a back electromotive force calculator for calculating a back electromotive force of a compressor based on a value of a current applied to a motor of the compressor and a value of a voltage applied to the motor of the compressor; an operation frequency reference value determining unit for detecting a mechanical resonance frequency of the compressor based on the back electromotive force value and the current value and determining the detected mechanical resonance frequency as an operation frequency reference value; and a controller for varying an operation frequency of the compressor according to the determined operation frequency reference value.