Abstract:
A fuel supply device includes: a linear actuator; a reciprocating pump having a boosting piston driven by the linear actuator and configured to reciprocate in an axial direction, the reciprocating pump being configured to suck the fuel when the boosting piston moves in a first direction and configured to boost and eject the fuel when the boosting piston moves in a second direction; and a controller configured to control driving of the linear actuator so as to adjust an amount of the fuel ejected from a boosting cylinder per reciprocating time by adjusting a ratio of a fuel ejection time and a fuel suction time of the reciprocating pump without changing the reciprocating time of the boosting piston in accordance with a load of the internal combustion engine. The adjustment adjusts a stroke length of the boosting piston and a moving speed of the boosting piston in the second direction.
Abstract:
A control method and a system for controlling the piston of a resonant linear compressor including at least one electronic control unit, the electronic control unit including at least one observing electronic circuit and at least one control circuit associated to each other. The observing electronic circuit is configured for: measuring at least one electric magnitude of the electric motor; estimating at least one set of electric parameters and at least one set of mechanical parameters of the resonant linear compressor; and estimating and providing at least one control parameter of the system for the control circuit based on the measured electric magnitude measured and on the estimated set of electric and mechanical parameters. The control circuit is configured for actuating the electric motor from the at least one control parameter.
Abstract:
A control method and a system for controlling the piston of a resonant linear compressor including at least one electronic control unit, the electronic control unit including at least one observing electronic circuit and at least one control circuit associated to each other. The observing electronic circuit is configured for: measuring at least one electric magnitude of the electric motor; estimating at least one set of electric parameters and at least one set of mechanical parameters of the resonant linear compressor; and estimating and providing at least one control parameter of the system for the control circuit based on the measured electric magnitude measured and on the estimated set of electric and mechanical parameters. The control circuit is configured for actuating the electric motor from the at least one control parameter.
Abstract:
Linear compressor comprising a resonant linear motor (4) having a stator (9) and a linear displacer (3), the linear motor (4) cooperating with a resonant spring (2) that is driven by the linear displacer (3) at one of the ends of the resonant spring (2) with the opposite end of the resonant spring (2) cooperating with a mechanical actuation element (1). A variation sensor of magnetic flux (5) cooperates with the resonant spring (2). Said variation sensor of magnetic flux (5) comprising a fixed part (7) and a movable part (6), the movable part (6) coupled to the end of the resonant spring (2) opposite to the end cooperating with the linear displacer (3). The variation sensor of magnetic flux (5) is the sole means required to determine the displacement amplitude and the frequency of oscillation of the displacer (3) of the linear motor (4). Corresponding method for controlling the stroke in such a linear compressor.
Abstract:
A method and system for pumping unit with an elastic rod system is applied to maximize fluid production. The maximum stroke of the pump and the shortest cycle time are calculated based on all static and dynamic properties of downhole and surface components without a limitation to angular speed of the prime mover. Limitations of structural and fatigue strength are incorporated into the optimization calculation to ensure safe operation while maximizing pumped volume and minimizing energy consumption. Calculated optimal prime mover speed is applied to the sucker rod pump by means of beam pumping, long stroke or hydraulic pumping unit by controlling velocity, acceleration and torque of the electric prime mover or by controlling pressure and flow rate in hydraulically actuated sucker rod pumping system.
Abstract:
Linear compressor comprising a resonant linear motor (4) having a stator (9) and a linear displacer (3), the linear motor (4) cooperating with a resonant spring (2) that is driven by the linear displacer (3) at one of the ends of the resonant spring (2) with the opposite end of the resonant spring (2) cooperating with a mechanical actuation element (1). A variation sensor of magnetic flux (5) cooperates with the resonant spring (2). Said variation sensor of magnetic flux (5) comprising a fixed part (7) and a movable part (6), the movable part (6) coupled to the end of the resonant spring (2) opposite to the end cooperating with the linear displacer (3). The variation sensor of magnetic flux (5) is the sole means required to determine the displacement amplitude and the frequency of oscillation of the displacer (3) of the linear motor (4). Corresponding method for controlling the stroke in such a linear compressor.
Abstract:
A system for controlling the stroke of an air-operated double diaphragm pump includes a first control valve and a second control valve disposed in parallel within a drive air outlet conduit. The first flow control valve has a first air flow capacity and the second flow control valve has a second air flow capacity which is less than about 50% of the first air flow capacity.
Abstract:
A simplified system and method for remotely monitoring and optionally further controlling pumpjack operating parameters of a pumpjack located at a distant site but within wireless cell phone station reception. Sensors situated on a pumpjack monitor and create analog output of operational conditions of the pumpjack. Digitizing means digitize the analog output of the sensors to digital data, and modem means transmit the digital data via a wireless cellular network to a network server. A user's computer communicates with the network server via the internet, and accesses the digital data to obtain information regarding the operational conditions of the pumpjack.
Abstract:
Rotational force from a driving device 11 is transmitted to an eccentric cam 32 through a rotating rod 31, and the eccentric cam 32 causes a piston 22 and a piston rod 25 to move up and down in a reciprocating manner by its rotation. Atmospheric air is inspired into a first chamber R1 in a cylinder 21 upon the descent of the piston 22. Upon the rise of the piston 22, the air in the first chamber R1 is compressed, and the compressed high-pressure air is discharged to an accumulator 12 through a discharge valve 25. The accumulator communicates with a second chamber R2 in the cylinder 21. When the air pressure in the accumulator 12 increases, this high-pressure air pushes the piston 22 to cancel the contact between the piston rod 26 and the eccentric cam 32, whereby the power transmission from a power transmission device 30 to a pressure conversion mechanism 20 is cut off.
Abstract:
An apparatus having at least one of a linear drive having a stator and a rotor configured for reciprocating movement therein along a drive axis between a first and a second rotor reversal point about a rotor zero position, and a linear compressor, having a piston housing and a compressor piston configured for reciprocating movement therein along a piston axis between a first and a second piston reversal point about a piston zero position and configured to be driven by the linear drive, wherein at least one of the rotor zero position and the piston zero position is adjustable.