Abstract:
An electronic device includes a main body, a metal cover, an antenna and a magnetic flux inducer unit. The metal cover is disposed at the main body and the main body includes a nonmetal covered portion. The antenna is disposed in the main body. The magnetic flux inducer unit is disposed in the main body and located between the nomnetal covered portion and the antenna. The permeability of the magnetic flux inducer unit is greater than 1.
Abstract:
The present invention provides a polarization unit with touch functions, including a first polarization plate and an inductive electrode layer. The first polarization plate has a first side and a second side opposite to the first side. The inductive electrode layer is disposed on the first side of the first polarization plate. By means of the polarization unit of the present invention being applied to an LCD module, the manufacturing yield can be increased and the touch functions of the LCD module can be fulfilled.
Abstract:
A touch display device includes a touch sensing unit, a first conductive adhesive layer, a second conductive adhesive layer, a flexible printed circuit board, a liquid crystal display unit, a first adhesion layer and a second adhesion layer. The first adhesion layer serves to adhere the touch sensing unit to the liquid crystal display unit. The touch sensing unit includes a transparent substrate, multiple first sensing electrodes and multiple second sensing electrodes. The transparent substrate has a touch section and a peripheral section around the touch section. The first sensing electrodes are disposed on one side of the transparent substrate and positioned on the touch section. The second sensing electrodes are disposed in the liquid crystal display unit. The touch display device increases the ratio of good products and lowers the manufacturing risk.
Abstract:
A method for forming a molecularly imprinted polymer biosensor includes: (a) preparing a reaction solution including an imprinting molecule, a functional monomer, an initiator, and a crosslinking agent; (b) disposing the reaction solution in a space between upper and lower substrates each of which is made of a light-transmissible material; (c) disposing on the upper substrate a photomask having a patterned hole; (d) irradiating the reaction solution through the patterned hole of the photomask and the upper substrate so that the reaction solution undergoes polymerization to form a polymer between the upper and lower substrates; (e) removing the upper substrate after the polymer is formed on the lower substrate; and (f) extracting the imprinting molecule from the polymer so that a patterned molecularly imprinted polymer film is formed on the lower substrate.
Abstract:
A manufacturing method of touchpad includes steps of: providing a substrate and disposing a shield layer on the substrate, a section of the substrate, where the shield layer is positioned being defined as a non-touch section, a section of the substrate, which is free from the shield layer being defined as a touch section; disposing a touch electrode layer with multiple touch electrodes on the substrate; disposing a metal wiring layer with multiple metal wires on the touch electrode layer; performing a first time of lithography and etching processes to the metal wiring layer so as to form multiple metal wires on the non-touch section; and performing a second time of lithography and etching processes to the touch electrode layer so as to form multiple touch electrodes on the non-touch section and the touch section. The manufacturing method saves the cost for masks and shortens the manufacturing time.
Abstract:
A capacitive touch device includes a first transparent substrate, a second transparent substrate and an adhesive layer connecting the first and second transparent substrates with each other. The first transparent substrate has a first side and a second side. A first conductive layer is disposed on the second side. The second transparent substrate has a third side and a fourth side. A second conductive layer is selectively disposed on the third side or the fourth side. The adhesive layer is disposed between the first transparent substrate and the second transparent substrate. By means of the design of the capacitive touch device, the thickness of the touch device is greatly reduced and the manufacturing cost is lowered.
Abstract:
A capacitive touch unit includes a transparent substrate, a polymeric transparent substrate, a second conductive layer and an adhesive layer. The transparent substrate is coated with at least one first conductive layer and is correspondingly attached to the polymeric transparent substrate. The second conductive layer is selectively disposed on one of two sides of the polymeric transparent substrate. The adhesive layer is disposed between the transparent substrate and the polymeric transparent substrate. By means of the capacitive touch unit, the thickness can be greatly reduced and the manufacturing cost can be greatly lowered.
Abstract:
A method for forming a molecularly imprinted polymer biosensor includes: (a) preparing a reaction solution including an imprinting molecule, a functional monomer, an initiator, and a crosslinking agent; (b) disposing the reaction solution in a space between upper and lower substrates each of which is made of a light-transmissible material; (c) disposing on the upper substrate a photomask having a patterned hole; (d) irradiating the reaction solution through the patterned hole of the photomask and the upper substrate so that the reaction solution undergoes polymerization to form a polymer between the upper and lower substrates; (e) removing the upper substrate after the polymer is formed on the lower substrate; and (f) extracting the imprinting molecule from the polymer so that a patterned molecularly imprinted polymer film is formed on the lower substrate.
Abstract:
The invention discloses an anesthetic sensing optical microfluidic chip system. The anesthetic sensing optical microfluidic chip system includes a biochip, a light source, and a detector. The biochip includes a substrate, a micro-channel, and a molecularly imprinted biosensor. The micro-channel is bonded beyond the substrate. The molecularly imprinted biosensor is disposed in the micro-channel, and a surface of the molecularly imprinted biosensor has a plurality of imprinted sites. When a sample including a plurality of anesthetic molecules is injected into the micro-channel and flowing through the surface of the molecularly imprinted biosensor, some of the anesthetic molecules are captured by the imprinted sites. The light source emits a sensing light to the plastic biochip, and the detector receives the sensing light passing through the imprinted sites on the surface of the molecularly imprinted biosensor and generates a detecting result based on the received sensing light.