Abstract:
A coating composition comprising low sodium containing colloidal silicas and ink jet recording sheets prepared from such coatings are described. The coating comprises binder and colloidal silica preferably having an average particle size in the range of about 1 to about 300 nanometers and which has a solids to alkali metal ratio of at least the sum of AW(−0.013SSA+9), AW being the atomic weight of alkali metal present in the colloidal silica and SSA being the specific surface area of the silica. It has been discovered that if the alkali metal, e.g., sodium, content of colloidal silica is reduced, coatings prepared from such colloidal silica and applied to conventional ink jet recording sheet supports provide a specular gloss of at least 30 at 60° C., even at a relatively high silica solids to binder solids ratio of 1:1 or greater.
Abstract:
Alumina particles and compositions containing alumina particles are disclosed. Methods of making alumina particles and methods of using alumina particles are also disclosed.
Abstract:
A coating composition comprising a relatively low alkali-containing colloidal silica and glossy ink jet recording sheets prepared from such coatings is described. The coating comprises binder and colloidal silica, e.g., having an average particle size in the range of about 1 to about 300 nanometers. The low alkali colloidal silica of this invention comprises ammonia, polydispersed colloidal silica, or both. Polydispersed silicas having a particle size distribution such that the median particle size is in the range of 15 to 100 nanometers and 80% of the particles span a range of at least about 30 to about 70 nanometers are preferred. It has been discovered that coatings prepared from such colloidal silica and applied to conventional ink jet recording sheet supports have a specular gloss of at least 30 at 60° C., and excellent printability at silica solids to binder solids ratio of 1:1 or greater.
Abstract:
Formulations comprising novel porous metal oxide particles and binder are particularly suitable for ink receptive coatings, e.g., for ink jet papers and films. The metal oxide particles used in this application have a porous structure that differs significantly from the nonporous silica colloids. The particles have a median particle size in the range of about 0.05 to about 3 microns and porosity such that when an aqueous dispersion of the particles is dried at least 0.5 cc/g of pore volume is from pores having a pore size of 600 Å or less. The particles also have a viscosity derived pore volume of at least 0.5 cc/g. Formulations comprising particles having a zeta potential of +20 mV are also disclosed.