Abstract:
Radio-frequency (RF) apparatus includes receiver analog circuitry that receives an RF signal and provides at least one digital signal to receiver digital circuitry that functions in cooperation with the receiver analog circuitry. The receiver analog circuitry and the receiver digital circuitry are partitioned so that interference effects between the receiver analog circuitry and the receiver digital circuitry tend to be reduced.
Abstract:
A ratiometric clock system for an integrated receiver and associated method are disclosed that provide an advantageous solution for combining digital signal processing (DSP) circuitry on the same integrated circuit as mixer and local oscillator (LO) generation circuitry. The generation circuitry generates an oscillation signal that is passed through a first divider to generate mixing signals for the mixer and that is passed through a second divider to generate a digital clock signal that is utilized by the DSP circuitry. This digital clock signal can be utilized by integrated analog-to-digital conversion circuitry, as well.
Abstract:
A receiver for AM and FM broadcast signals is disclosed. FM signals are received from an FM antenna and then processed by receive path circuitry or an FM tuner integrated circuit (IC) to produce audio output signals, such as digital audio output signals. The AM signals are received by an AM antenna and then up-converted using a fixed-clock to a frequency range nearer to the FM signal frequencies. The up-converted AM frequencies are then processed using the receive path circuitry. A multiplexer (MUX) allows for selection of the FM signals or the up-converted AM signals to be passed through for signal processing.
Abstract:
A low-noise current reference circuitry includes a voltage source, a current source, and a controller. The voltage source generates a reference voltage. The current source provides a low-noise output current in response to a control signal. The controller provides the control signal based at least in part on the relative magnitudes of the reference voltage and a voltage derived from the output current. A low-noise voltage reference circuitry includes a reference voltage source, a voltage source, and a controller. The reference voltage source generates a reference voltage. The voltage source provides a low-noise output voltage in response to a control signal. The controller provides the control signal based at least in part on the relative magnitudes of the output voltage and the reference voltage.
Abstract:
An integrated low-IF (low intermediate frequency) terrestrial broadcast receiver and associated method are disclosed that provide an advantageous and cost-efficient solution. The integrated receiver includes a mixer, local oscillator generation circuitry, low-IF conversion circuitry, and DSP circuitry. And the integrated receiver is particularly suited for small, portable devices and the reception of terrestrial audio broadcasts, such as FM and AM terrestrial audio broadcast, in such portable devices.
Abstract:
A radio-frequency (RF) receiver includes a receiver analog circuitry and a receiver digital circuitry. The receiver analog circuitry resides within a first integrated circuit and the receiver digital circuitry resides within a second integrated circuit. The second integrated circuit couples to the first integrated circuit via a one-bit digital interface. The receiver analog circuitry receives an RF signal and processes the received RF signal to generate a digital signal. The receiver analog circuitry provides the digital signal to the receiver digital circuitry. The receiver digital circuitry includes a digital down-converter circuitry that mixes the digital signal with an intermediate frequency (IF) local oscillator (LO) signal to generate a digital down-converted signal. The receiver digital circuitry also includes a digital filter circuitry that filters the digital down-converted signal to generate a filtered digital signal.
Abstract:
In one embodiment, the present invention includes an amplifier having an input to receive a radio frequency (RF) signal from an output node of a source. An input stage coupled to the amplifier input may include one or more components to aid in processing of incoming signals. One such component coupled between the source and the input of the amplifier is a coupling capacitor used to maintain a bias voltage of the amplifier at a different potential than a DC voltage of the output node. In certain applications, the amplifier and the coupling capacitor may be integrated on a single substrate.
Abstract:
In one aspect, the present invention includes an apparatus having a digital signal processor (DSP), a controller coupled to the DSP to provide control signals to the DSP, and a one-time programmable (OTP) memory coupled to the DSP and the controller. The OTP memory may include multiple code portions including a first code block to control the DSP and a second code block to control the controller.
Abstract:
In one embodiment, the present invention includes an amplifier having an input to receive a radio frequency (RF) signal from an output node of a source. An input stage coupled to the amplifier input may include one or more components to aid in processing of incoming signals. One such component coupled between the source and the input of the amplifier is a coupling capacitor used to maintain a bias voltage of the amplifier at a different potential than a DC voltage of the output node. In certain applications, the amplifier and the coupling capacitor may be integrated on a single substrate.
Abstract:
A method of operating a radio-frequency (RF) circuitry and a signal-processing circuitry in a mobile telephone apparatus includes operating the RF circuitry during a first time period. During the first period, the RF circuitry generates a set of data from an RF signal received by the mobile telephone apparatus. The method further includes storing the set of data in a storage device. The method also includes operating the signal-processing circuitry during a second time period to process the set of data.