Abstract:
The present invention involves using mechanized strategies to fabricate test samples as well as strategies for selecting sample substrates. These strategies significantly reduce the effort and the variabilities associated with making test samples and testing hair fixative compositions. The technology allows simple, rapid, inexpensive evaluation of hair fixative compositions in a way that generates consistent, reliable data. The quality of the data is high enough to facilitate easier qualitative and quantitative comparisons among compositions under investigation. In preferred modes of practice, the present invention provides a simple way to screen new polymer systems and other developmental products. Additionally, this invention can be used to generate more meaningful comparative data for customer and personal care industry presentations.
Abstract:
Provided is a method for scavenging airborne formaldehyde. The method comprises contacting the airborne formaldehyde with a formaldehyde scavenger of the formula I: where R1, R2, R3, R4, R5, R6, and RA are as defined herein.
Abstract:
This invention relates to vinyl ether-based coatings for which properties such as color stability, thermal stability, mechanical stability, hydrolytic stability, and resistance to embrittlement may be maintained and properties hydrogen generation and blocking are minimized. The coatings comprise a vinyl ether-containing composition polymerizable by actinic, gamma ray, or electron beam radiation comprising: (a) an oligomer or a mixture of oligomers which are monofunctional, multifunctional, or a mixture of both monofunctional and multifunctional and which have a reactive functionality chosen from the group consisting of epoxy, acrylate, vinyl ether, maleate, or mixtures thereof; (b) monomers which are monofunctional, multifunctional, or a mixture of both monofunctional and multifunctional monomers and which have a reactive functionality chosen from the group consisting of epoxy, acrylate, vinyl ether, maleate, or mixtures thereof, wherein at least one of (a) or (b) must contain a vinyl ether functionality; (c) a photoinitiator, optionally including a sensitizer, chosen from the group consisting of a cationic photoinitiator and a radical photoinitiator; and (d) a thermal oxidation stabilizer. Adhesion to a substrate, particularly glass, is achieved by coupling agents including vinyl ether urethane siloxane compounds.
Abstract:
The present invention provides methods and compositions to impart coffee stain resistance to polyamide textile substrates such as carpets. The compositions comprise either (i) a copolymer selected from the group consisting of a hydrolyzed aromatic-containing vinyl ether maleic anhydride copolymer, a half ester of an aromatic-containing vinyl ether maleic anhydride copolymer, and mixtures thereof, or (ii) an aromatic-containing acrylate copolymerized with an acid selected from the group consisting of acrylic acid and maleic acid. The coffee stain-resistant polyamide textile substrates made are also part of the invention.
Abstract:
The present invention relates to non-halogenated hydrocarbon polymeric compositions which impart durable stain resistance to fibrous substrates, particularly nylon containing articles. In addition, it relates to fluorine containing polymeric compositions which impart durable stain resistance to fibrous substrates as above. It relates also to processes in which such substrates are treated so as to impart durable stain resistance to them. It relates further to a manufacturing process for preparing the compositions of the invention.
Abstract:
The present invention relates to non-halogenated hydrocarbon polymeric compositions which impart durable stain resistance to fibrous substrates, particularly nylon containing articles. In addition, it relates to fluorine containing polymeric compositions which impart durable stain resistance to fibrous substrates as above. It relates also to processes in which such substrates are treated so as to impart durable stain resistance to them. It relates further to a manufacturing process for preparing the compositions of the invention.
Abstract:
A method and apparatus for testing the functionality and maximum operating speed of a dynamic random access memory (DRAM) chip includes a random sequencer circuit for generating a pseudo-random data bit pattern to be written into the cells of a DRAM chip. The apparatus includes a variable clock circuit which produces a continuously variable frequency clock signal to continuously increase the speed at which data is written into the DRAM. During read cycles of the DRAM, data read from the DRAM is compared with the pattern produced by the random sequencer in a comparator, and any non-correspondence between bits will activate an LED to indicate a failure of the chip. In this way, the maximum speed of the chip may be determined to isolate both defective and marginally damaged chips. The apparatus is operated as a stand-alone unit which does not require the use of any software or interfaced host microprocessor.
Abstract:
An improved dual ring sealing arrangement (10) for a piston head (17) having at least one circumferential groove (15) formed therein, wherein the arrangement comprises a first sealing ring (13) having a recess (23) adapted to receive a protrusion (22) formed on the second sealing ring (14), whereby the respective ring gaps (20) are off-set from one another when said first and second sealing rings are joined together in a mating relationship.
Abstract:
A compound having formula (Ph3C)mAr(OR)n, wherein Ph represents a phenyl group, Ar is an aromatic ring system having from six to twenty carbon atoms, R is C1-C18 alkyl or C7-C12 aralkyl, m is one or two, and n is an integer from one to four.
Abstract:
A method for marking a petroleum hydrocarbon or a liquid biologically derived fuel by adding at least one compound having formula (I), wherein R1 and R2 independently represent hydrogen or C1-C4 alkyl groups, and G represents hydrogen or at least one substituent selected from the group consisting of C1-C18 alkyl and C1-C18 alkoxy.