Abstract:
An inflatable air bag system having an inflatable curtain-like cushion element for inflated deployment away from a storage position along the roof rail portion of the vehicle frame to provide coverage over an expanded region of the vehicle interior. The cushion element is inflated by the rapid introduction of a substantially inert gas such as helium from an elongate gas storage receptacle extending at least partially along the roof rail portion of the vehicle frame. The gas storage receptacle serves as a profiling and stiffening support member for the cushion element in the storage position extending along the roof rail. The inflation gas may be discharged directly into an interior portion of the cushion element so as to promote rapid expansion and deployment of the cushion element over centralized regions of the surface to be covered.
Abstract:
This present invention provides an air bag assembly for use in a vehicle having a front structural member which preferably comprises an A-pillar of the vehicle. The air bag assembly comprises an inflator for generating gas and an air bag cushion deployable upon generation of gas by the inflator. The air bag cushion is preferably stored along a length of the front structural member while the inflator is preferably located at a position remote from the front structural member. The air bag assembly further includes a gas conduit which provides a gas path for transferring the gas from the inflator to the air bag cushion. The gas conduit comprises an expandable member extending along at least a length of the front structural member which permits the gas conduit to be packaged within the A-pillar structure underneath interior trim molding used to cover the A-pillar.
Abstract:
A side impact air bag with a self-tensioned lower edge to prevent the occupant from ejection during a rollover event or subsequent impact, A side air bag is secured to the vehicle roof rail between the front and rear pillars. A pair of tethers are secured to the air bag at a lower portion thereof and one each in turn secured to the front and rear pillars. A plurality of substantially inverted V-shaped zero length tethers extend from the lower portion to define a plurality of chambers, which when inflated cause the lower portion of the air bag to shrink and induce tension therein and to the tethers. When the side impact air bag is inflated the air bag positions itself between the occupant and vehicle window and is held in place by the tension created by the inflated sections.
Abstract:
An air bag module includes an air bag and an inflator being activatable to discharge inflator gas for inflating the air bag. The inflator has at least one discharge port through which inflator gas is discharged. A housing includes at least one inflator vent opening aligned with the discharge port. A variable inflation device is mounted on the inflator and includes a movable member alignable with the vent opening. The movable member is movable relative to the vent opening for opening and closing the vent opening at a predetermined time during inflator activation to control the amount of inflator gas discharged into the air bag and the amount of inflator gas expelled out through the vent opening of the housing. Preferably, the variable inflation device includes an initiator device being activatable during activation of the inflator to move the movable member relative to the vent opening at the predetermined time during inflator activation.
Abstract:
An air bag module includes an air bag and an inflator being activatable to discharge inflator gas for inflating the air bag. The inflator has at least one discharge port through which inflator gas is discharged. A housing has a wall adjacent the discharge port of the inflator and includes at least one vent opening. The module also includes a movable member alignable with the vent opening. The movable member is movable relative to the vent opening for opening and closing the vent opening at a predetermined time during inflator activation to control the amount of inflator gas discharged into the air bag and the amount of inflator gas expelled out through the vent opening of the housing. A device is activatable during activation of the inflator to move the movable member relative to the vent opening at the predetermined time during inflator activation.
Abstract:
An air bag module includes an air bag and a container including spaced apart end walls. An elongated inflator extends between the end walls for discharging gas to inflate the air bag. A lug projects outwardly from an inflator end of the inflator and the lug engages one of the end walls of the container. First and second opposing spring tabs are included on the one end wall of the container. The spring tabs each include a retention end which are spaced apart from each other and define a retention opening therebetween which is narrower than the lug on the inflator end. Upon insertion of the lug into the retention opening, the lug engages the retention ends of the spring tabs and deflects the spring tabs such that the retention ends of the spring tabs each grip against the lug to cooperatively capture the lug between spring tabs and prevent removal of the inflator from the container.
Abstract:
An air bag module includes an inflator for generating gas and an air bag deployable upon generation of gas by the inflator. The air bag module further includes a canister for housing the inflator and a clamshell cover for housing the air bag. The clamshell cover is attached to the canister. Preferably, the clamshell cover includes first and second halves and a bendable thin hinge portion pivotally connecting the first and second halves. Upon air bag deployment, the air bag breaks open and deploys out through the hinge portion of the clamshell cover.
Abstract:
An airbag module includes an airbag holder, which has a base body and a projection on a peripheral surface of the base body extending around this in full or with the exception of at least one interruption, and an airbag which has an airbag mouth whose peripheral contour is smaller than a peripheral contour enclosing the projection and the base body and which is held at the airbag holder in an end position in which the airbag mouth encloses the base body and thereby engages behind the projection at a first side of the projection.
Abstract:
A frontal air bag system for a vehicle including an inflator mounted to vehicle structure and an air bag operatively connected to the inflator and mounted to a pillar of the vehicle. The frontal air bag system also includes a trim molding covering the air bag and mounted to the pillar. The air bag, inflated by the inflator, is extended downward and sideways in front of an occupant seated in the vehicle.
Abstract:
A tethering restraint system is provided which restrains an inflatable air bag cushion during an extended period of inflation rather than limiting such restraint to the final stages of inflation. Maintaining tethering restraint during the inflation cycle increases the time over which energy is transferred between the air bag cushion and an occupant to be protected thereby reducing the instantaneous force transferred between the occupant and the air bag cushion as contact takes place.