Abstract:
An improved process is disclosed for producing a unique metals-containing anisotropic pitch suitable for carbon fiber manufacture. Soluble, aromatic-organometallic compounds are added to a carbonaceous feedstock which is substantially free of mesophase pitch and the resulting composition is heat soaked to produce an isotropic pitch product containing mesogens and soluble, aromatic-organometallic compounds. Next, the pitch product is solvent fractionated to separate mesogens which contain metals from the organometallic compounds. The metals-containing mesogens are heated to a temperature sufficient to cause fusion to produce a metals-containing mesophase pitch. In another method, the carbonaceous feedstock is heat soaked to produce an isotropic pitch product containing mesogens and high molecular weight, soluble, aromatic-organometallic compounds are added to the mesogen containing isotropic pitch product prior to solvent fractionation. Metals-containing carbon fibers produced from the mesophase pitch exhibit enhanced stabilization, tensile strength and modulus properties. Alternatively, the solvent fractionation or separation is conducted under supercritical extraction conditions to produce a metals-containing mesophase pitch. Organometallic compounds may be added to the carbonaceous feedstock either prior to or after the heat soak step.
Abstract:
An improved process is disclosed for producing a unique metals-containing anisotropic pitch suitable for carbon fiber manufacture. Soluble, aromatic-organometallic compounds are added to a carbonaceous feedstock which is substantially free of mesophase pitch and the resulting composition is heat soaked to produce an isotropic pitch product containing mesogens and soluble, aromatic-organometallic compounds. Next, the pitch product is solvent fractionated to separate mesogens which contain metals from the organometallic compounds. The metals-containing mesogens are heated to a temperature sufficient to cause fusion to produce a metals-containing mesophase pitch.In another method, the carbonaceous feedstock is heat soaked to produce an isotropic pitch product containing mesogens and high molecular weight, soluble, aromatic-organometallic compounds are added to the mesogen containing isotropic pitch product prior to solvent fractionation. Metals-containing carbon fibers produced from the mesophase pitch exhibit enhanced stabilization, tensile strength and modulus properties.Alternatively, the solvent fractionation or separation is conducted under supercritical extraction conditions to produce a metals-containing mesophase pitch. Organometallic compounds may be added to the carbonaceous feedstock either prior to or after the heat soak step.
Abstract:
Heavy hydrocarbonaceous materials are converted to distillate products and pitch in a hydrogen donor diluent cracking process, and the pitch is utilized as feed to a delayed coker. Green coke is calcined in a vertical shaft kiln, and steam is injected into the bottom of the kiln to produce hydrogen by reaction of steam with coke. The hydrogen is drawn from the kiln and used to hydrogenate recycle donor solvent for the cracking step. High sulfur coke can be desulfurized in the kiln, and distillate products in addition to donor solvent can be hydrotreated using hydrogen from the kiln.
Abstract:
Low value heavy hydrocarbonaceous material such as a petroleum refinery vacuum residuum is converted to distillate products and pitch in a hydrogen donor diluent cracking process, and the pitch is utilized as feedstock to a delayed premium coker.
Abstract:
A petroleum refinery vacuum residuum stream is subjected to hydrogen donor diluent cracking, the liquid cracking effluent is hydrodesulfurized, the hydrodesulfurizer effluent is fractionated, and the fractionator bottoms stream is fed to a delayed coker where premium type delayed coke is produced. The gas oil boiling range fraction from the fractionator is utilized as the donor diluent in the cracking step.