Abstract:
The present invention discloses an array substrate for an IPS-LCD device. The IPS-LCD device according to the present invention implements a multi-domain for a liquid crystal layer. The liquid crystal molecules are aligned in various directions with respect to each different domain. Therefore, the different domains compensate for one another such that a color shift is prevented in spite of wide viewing angles. To form the multi-domain, the present invention provides an array substrate having divided common electrode or pixel electrode or both. In another aspect, to form the multi-domain, the present invention provides an array substrate having multi-bar shaped common and pixel electrodes. Each of the common and pixel electrodes has a transverse portion and a perpendicular portion. The transverse portions of the common and pixel electrodes induce a first domain, whereas the perpendicular potions of the common and pixel electrodes induce a second domain.
Abstract:
The present invention discloses an array substrate for an IPS-LCD device. The IPS-LCD device according to the present invention implements a multi-domain for a liquid crystal layer. The liquid crystal molecules are aligned in various directions with respect to each different domain. Therefore, the different domains compensate for one another such that a color shift is prevented in spite of wide viewing angles. To form the multi-domain, the present invention provides an array substrate having divided common electrode or pixel electrode or both. In another aspect, to form the multi-domain, the present invention provides an array substrate having multi-bar shaped common and pixel electrodes. Each of the common and pixel electrodes has a transverse portion and a perpendicular portion. The transverse portions of the common and pixel electrodes induce a first domain, whereas the perpendicular portions of the common and pixel electrodes induce a second domain.
Abstract:
A multi-domain liquid crystal display device includes: first and second substrates opposing each other; a plurality of gate lines and data lines on the first substrate lengthwise and crosswise, to define a pixel region; a common auxiliary electrode on a layer equal to the gate lines to surround the pixel region; a gate insulating film on the first substrate; a passivation film on the gate insulating film including the first substrate; a pixel electrode in the pixel region; a light-shielding layer on the second substrate; a color filter layer on the light-shielding layer; a common electrode on the color filter layer; a plurality of electric field distortion dielectric structures patterned in different forms within neighboring pixels; an alignment film on at least one of the first and second substrates; and a liquid crystal layer between the first substrate and the second substrate.
Abstract:
A liquid crystal display device having first and second substrates with an interposed liquid crystal layer that has a negative or a positive dielectric anisotropy. First and second electrodes are formed on opposing surfaces of the first and second substrates. A first orientation film comprised of a ferroelectric liquid crystal polymer is formed on the first electrode, and a second orientation film is formed on the second electrode. First and second polarizers are formed on exterior surfaces of the first and second substrates.
Abstract:
A method for fabricating an array substrate for an in-plane switching liquid crystal display device includes forming a gate line and a data line on the substrate, the gate line and the data line crossing each other to define a pixel region, forming a thin film transistor that is electrically connected to the gate and data lines, and forming a common line parallel to the gate line. A plurality of common electrodes are formed to perpendicularly extend from the common line. A plurality of pixel electrodes are formed in an alternating pattern with the plurality of common electrodes, and an overcoat layer is formed over the plurality of common electrodes and the plurality of pixel electrodes, the overcoat layer having a plurality of holes.
Abstract:
A liquid crystal display device having first and second substrates with an interposed liquid crystal layer that has a negative or a positive dielectric anisotropy. First and second electrodes are formed on opposing surfaces of the first and second substrates. A first orientation film comprised of a ferroelectric liquid crystal polymer is formed on the first electrode, and a second orientation film is formed on the second electrode. First and second polarizers are formed on exterior surfaces of the first and second substrates.
Abstract:
A multi-domain liquid crystal display device includes first and second substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines are arranged in a second direction on the first substrate to define a pixel region. A pixel electrode is electrically charged through the data bus line in the pixel region. A dielectric frame is in a region other than a region where the pixel electrode is formed, and distorts electric field applied to the liquid crystal layer. A common electrode is on the second substrate, and an alignment layer is on at least one substrate between the first and second substrates.
Abstract:
An LCD device is disclosed, which improves color characteristics and gray inversion regardless of a viewing angle. The LCD device includes a first electrode on a first substrate having a plurality of slit patterns, a second electrode on a second substrate, a liquid crystal layer between the first and second substrates, the liquid crystal layer having different alignment directions by each slit pattern, and at least one light-shielding layer below the first electrode.
Abstract:
A multi-domain liquid crystal display device comprises first and second substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines are arranged in a second direction on the first substrate to define a pixel region. A pixel electrode electrically is charged through the data bus line in the pixel region, a color filter layer is formed on the second substrate, and a common electrode is formed on the color filter layer. Dielectric frames are formed in the pixel region, and an alignment layer on at least one substrate between the first and second substrates.
Abstract:
A field sequential liquid crystal display device includes a circuit unit producing RGB reference voltages and scanning signal voltages using RGB data and control signals, a liquid crystal display panel changing alignment direction of liquid crystal molecules in accordance with the RGB reference voltages and the scanning signal voltages, and a backlight device emitting light to the liquid crystal display panel, wherein the circuit unit includes an interface receiving the RGB data and the control signals, a timing controller generating gate control signals and data control signals, at least two gamma generating units generating the RGB reference voltages, a switch selecting one of the RGB reference voltages, a data driver receiving the data control signal and the selected RGB reference voltage selected from the switch, and supplying an RGB image voltage to the liquid crystal display panel in accordance with the selected RGB reference voltage and the data control signal, and a gate driver receiving the gate control signals from the timing controller and supplying the scanning signal voltage to the liquid crystal display panel in accordance with the gate control signal.