Abstract:
An apparatus and method for transmitting and/or receiving data in a closed-loop multi-antenna system, the method of receiving data including: acquiring CQIs of data streams by channel estimation of a received signal; selecting at least one CQI from among the acquired CQIs; calculating a common CQI using the acquired CQIs; generating feedback information with the at least one CQI, the common CQI, and an index of a data stream with the at least one CQI; and transmitting the feedback information to a transmitter.
Abstract:
An apparatus and method for scheduling a multiuser and a single user in a Multiple Input Multiple Output (MIMO) system are provided. The method for scheduling a multiuser and a single user at BS in MIMO system includes determining ratios of MultiUser-MIMO (MU-MIMO) chunks and Single User-MIMO (SU-MIMO) chunks to allocation chunks, determining the MU-MIMO chunks in the determined ratio and the remaining chunks as the SU-MIMO chunks, transmitting chunk information relating to the determined chunks to one or more Mobile Stations (MSs), and, when Channel Quality Information (CQI) feedback information relating to the determined MU-MIMO chunks and the determined SU-MIMO chunks is received from the MSs, allocating chunks and streams for MU-MIMO/SU-MIMO to users who maximize overall capacity using the CQI feedback information.
Abstract:
An apparatus and method for selecting an effective channel in a multi-user MIMO system are provided, in which a receiver receives pilot signals from a transmitter, determines channel information indicating an antenna offering the best quality among a plurality of antennas using the pilot signals, and generates feedback information with the channel information, and the transmitter receives feedback information from a plurality of receivers, generates a channel matrix using the feedback information, and transmits data simultaneously to the plurality of receivers using the channel matrix.
Abstract:
A solid lipophilic microparticle having an average particle size ranging from 0.1 to 200 μm, comprising a lipophilic substance, hyaluronic acid or an inorganic salt thereof and an active ingredient selected from the group consisting of a protein or peptide drug, retains the full activity of the active ingredient, and when formulated in the form of an oil dispersion or oil-in-water emulsion, it releases in an in vivo environment the active ingredient in a controlled manner over a long period.
Abstract:
Provided is a method for detecting random access signal, and the method includes detecting a peak position of a random access signal in a first preamble section and ignoring the random access signal apart from the peak position for less than a certain distance in a second preamble section adjacent to the first preamble section.
Abstract:
A mobile communication apparatus that utilizes multiple base station/mobile station antennas and a mobile communication method performed therein are provided. The mobile communication apparatus includes a base station having at least two antennas and at least two mobile stations having at least one antenna, respectively. The base station restores weight information and channel status information from feedback signals received from the mobile stations, determines downlink investigation information that results in maximum transmission channel capacity based on the restored weight information and channel status information, selects mobile stations for simultaneous transmission based on the downlink investigation information, and processes data to be transmitted to the selected mobile stations based on the downlink investigation information.
Abstract:
A mobile communication apparatus with multiple transmission and reception antennas and a mobile communication method therefor are provided. In the mobile communication apparatus including a base station and a mobile station, the base station with at least one transmission antenna restores long-term information, short-term information, a signal to interference and noise ratio (SINR) from a feedback signal received from the mobile station, spatially processes dedicated physical channel (DPCH) signals using basis information generated from the restored long-term information, short-term information, and SINR, and transmits the results of adding pilot channel (PICH) signals to the spatially processed results to the mobile station. The mobile station with at least one reception antenna determines a first characteristic corresponding to the channel downlink characteristic for each of the transmission and reception antennas, from the PICH signals transmitted from the base station, determines the long-term information, the short-term information, and downlink power control information including the SINR, which reflect the first characteristic, converts the determined long-term information, short-term information, and downlink power control information into the feedback signal, and transmits the feedback signal to the base station.
Abstract:
A supporter usable with a display apparatus includes a base, a vertical moving member coupled to a display main body, a guide frame coupled to the base to support the vertical moving member to slide up and down, a spring rotor supported in the vertical moving member rotatably having a rotational axis transverse to a moving direction of the vertical moving member to move up and down along with the vertical moving member, a spiral plate spring having an inside end part coupled to the spring rotor as being wound around the spring rotor and an outside end part coupled to the guide frame to elastically resist a downward movement of the vertical moving member, a spring friction part to frictionally contact the spiral plate spring to resist a rotational movement of the spiral plate spring, and a rotor friction part to frictionally contact the spring rotor to resist a rotational movement of the spring rotor.
Abstract:
A mobile communication apparatus that utilizes multiple base station/mobile station antennas and a mobile communication method performed therein are provided. The mobile communication apparatus includes a base station having at least two antennas and at least two mobile stations having at least one antenna, respectively. The base station restores weight information and channel status information from feedback signals received from the mobile stations, determines downlink investigation information that results in maximum transmission channel capacity based on the restored weight information and channel status information, selects mobile stations for simultaneous transmission based on the downlink investigation information, and processes data to be transmitted to the selected mobile stations based on the downlink investigation information.
Abstract:
Provided are a data transmitting and receiving method for a multiple-input multiple-output (MIMO) communication system, and a transmitter and a receiver using the method. Accordingly, since precoding matrices of a codebook is constituted using a rotation matrix, expansion of the codebook is easy, and since each of the precoding matrices is determined according to the number of transmit antennas, the codebook is systematically created according to a system. In addition the codebook can be applied to even a correlated channel, and the minimum distance between precoding matrices can advantageously be maximized.