Abstract:
A device for manipulating microwave radiation includes a substrate that defines the shape of a surface for reflecting microwave radiation. The device also includes a metal fitting. The fitting conforms to the defined shape, and provides the surface that reflects microwave radiation.
Abstract:
Method and apparatus for forming rare-earth magnets and magnet precursors of fine particle sized metal alloy powders with a high degree of metal to metal intimacy and homogeneity in the particle to particle metal composition. Salts of the desired metals which may include or be selected from zirconium, samarium, iron, cobalt, copper, neodymium and boron with nitric acid in a water based solution are atomized through a nozzle, which may be ultrasonic, into fine mist droplets form metal oxide particles which condense through a heated, atmospheric environment furnace. The furnace temperature is in a range of 600.degree. to 1150.degree. C. and causes decompositon of the metal salts along with their oxidation, driving off the liquid and nitrogen components along with other carrier materials. A very fine sized powder, typically micron dimension size powder of metal oxides, in which each particle represents a homogeneous proportion of the desired metal components, is collected in the bottom of the furnace. These fine particle metal oxide powders are subsequently reduced to metal alloy powder particles of similar homogeneity in the metal proportions. The reduction reaction typically utilizes calcium hydride in a hydrogen atmosphere to convert the metal oxides to metal alloy particles. The metal alloy powder is then aligned, compacted, densified and magnetized to produce magnets of high magnetic performance.
Abstract:
Apparatus and method for forming radial orientation rare earth-transition metal magnets in continuous arc rings by hot isostatic pressing. A method includes the steps of compacting rare earth-transition metal powders having a particle size up to 40 microns into radially oriented rings in a mold provided with a radially aligning field, stacking a plurality of compacted radially oriented rings within an annular cavity within a sealed, evacuated canister to form a cylinder of a predetermined height, subjecting the canister to temperatures in the range of 900.degree. to 1150.degree. C. under a gas pressure of 15 kpsi to densify the compacts, and cooling the canister and the compacts to room temperature. An apparatus for performing the above-described method, includes a mold for forming green compacts having a central iron core or mandrel, as outer housing forming an annular space between it and the iron mandrel, plungers for compacting into a ring rare earth-transition metal powder within the annular space, and means for forming a radially oriented magnetic field. The magnetic field forming means includes a pair of electromagnetic coils with bucking fields disposed on opposite axial ends of the annular space. Ferromagnetic paths guide the flux through the inner and outer walls of the mold and through the powder to form a radial field for powder alignment. A canister is used for forming magnets from the green compacts and the canister is typically composed of a soft iron that will collapse around the magnets and transmit compressive forces to the green compacts for densification thereof. The canister includes an annular space for stacking green compacts bounded by inner and outer walls and an evacuation tube. A central mandrel may be provided if a ring magnet having a predetermined inner diameter is desired.
Abstract:
A nonequilibrium state material, typically a rare-earth-transition metal, for reversible hydrogen storage. A rare earth-transition metal such as a rare earth cobalt alloy, like a samarium-cobalt or a lanthanum-nickel alloy, is provided in the amorphous or metastable crystalline state as a hydrogen absorbing material, particularly for use in a hydrogen storage and retrieval system, such as a fluidized bed or stacked plate hydrogen storage cell. The rare-earth-transition metal material is rapidly cooled from the liquid state to avoid the transition to a full crystalline state thereby obtaining an amorphous or quasi-stable crystalline state material which has the property of enhanced hydrogen storage capacity as well as being substantially immune to fracturing.