Abstract:
In a vertical alignment liquid crystal display, a thin film transistor is formed on a first insulating substrate, and a pixel electrode (ITO) including cutouts (OPEN) is formed on the first substrate or a second substrate. A width of the cutouts of the upper and lower substrates gradually increases or decreases along a length thereof.
Abstract:
Liquid crystal material is interposed between an upper panel and a lower panel. The lower panel includes signal transmitting wires including a gate wire and a data wire, thin film transistors connected to the signal transmitting wires and pixel electrodes connected to the thin film transistors, and the upper panel includes color filters, a black matrix and a common electrode. The pixel electrodes and the common electrode have apertures partitioning the pixel electrode into several domains. In addition, the director of liquid crystal molecules contained in the liquid crystal material is aligned perpendicular to the upper panel and the lower panel in absence of electric field between the pixel electrodes and the common electrode. The dielectric anisotropy of the liquid crystal material has a value ranging −4.0 to −5.5.
Abstract:
A liquid crystal display comprises: first and second panels facing each other; a compensation film and a first polarizer disposed on the first panel, the compensation film having phase retardation characteristics; and a second polarizer having a supporting film disposed on the second panel, the supporting film having phase retardation characteristics. In alternative embodiments, a supporting film is used in place of the compensation film. The supporting film has retardation characteristics.
Abstract:
A liquid crystal display is provided, which includes: a first panel; a second panel facing the first panel; a liquid crystal layer interposed between the first panel and the second panel; a biaxial compensation film disposed on an outer surface of the first panel; a first polarizing film disposed on an outer surface of the biaxial compensation film; a C-plate uniaxial compensator disposed on an outer surface of the second panel and having a horizontal retardation lower than about 10 nm; and a second polarizing film disposed on an outer surface of the C-plate uniaxial compensator.
Abstract:
Saw-shaped protrusions, which are parallel to each other, are formed on the common electrode and the pixel electrode in two substrates. Protrusions in two substrates are arranged alternately and the bent portions of the saw-shaped protrusions are placed on the line transverse passing through the center of a pixel. Branches extend from the convex point of one saw-shaped protrusion toward the apex to the other saw-shaped protrusion, and another branch extend from the point where the protrusion meets the boundary of the pixel electrode toward the point where the boundary of the pixel electrode and the saw-shaped protrusion make an acute angle. A liquid crystal layer between two electrodes are divided to four regions where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes, and then, wide viewing angle is obtained. In most regions, protrusions are formed straight and the protrusions have only obtuse angles at the bent points. Therefore, fast response time is shortened, disclination is removed and luminance increases.
Abstract:
A large-sized display panel assembly includes an upper polarizing sheet, a lower polarizing sheet, a display panel and a polarizing axis changing unit. The upper polarizing sheet includes a first polarizing axis. The lower polarizing sheet faces the upper polarizing sheet and includes a second polarizing axis having a same direction as the first polarizing axis. The display panel is disposed between the upper and lower polarizing sheets and changes a light-transmissivity to display images. The polarizing axis changing unit is disposed between the upper and lower polarizing sheets and rotates the polarized light 90 degrees with respect to a predetermined direction.
Abstract:
A liquid crystal display comprises: first and second panels facing each other; a compensation film and a first polarizer disposed on the first panel, the compensation film having phase retardation characteristics; and a second polarizer having a supporting film disposed on the second panel, the supporting film having phase retardation characteristics. In alternative embodiments, a supporting film is used in place of the compensation film, The supporting film has retardation characteristics.
Abstract:
The liquid crystal display device includes a liquid crystal display panel, a c-plate mono-axial compensating film, first and second polarizing plates. The liquid crystal display panel includes a first substrate having a first electrode, a second substrate having a second electrode, and liquid crystal interposed between the first and second substrates. The liquid crystal is vertically aligned when no electrical filed is applied between the first and second electrodes. The c-plate mono-axial compensating film is disposed on the first substrate. The first polarizing plate is disposed on the c-plate mono-axial compensating film. The second polarizing plate is disposed on the second substrate. A liquid crystal display device according to an embodiment of the present invention has reduced thickness, weight. Further, the liquid crystal display device has increased luminance and broadened viewing angle.
Abstract:
A tetragonal ring shape aperture is formed in the common electrode on one substrate and a cross shape aperture is formed at the position corresponding to the center of the tetragonal ring shape aperture in the pixel electrode on the other substrate. A liquid crystal layer between two electrodes are divided to four domains where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes. The directors in adjacent domains make a right angle. The tetragonal ring shape aperture is broken at midpoint of each side of the tetragon, and the width of the aperture decreases as goes from the bent point to the edge. Wide viewing angle is obtained by four domains where the directors of the liquid crystal layer indicate different directions, disclination is removed and luminance increases.
Abstract:
A thin film transistor array substrate is provided with a gate line assembly, a data line assembly, and thin film transistors. The data line assembly crosses over the gate line assembly while defining pixel regions. A pixel electrode is formed at each pixel region. A color filter substrate is provided with a black matrix, and color filters of red, green and blue are formed at the black matrix at the pixel regions. An overcoat layer covers the color filters, and a common electrode is formed on the overcoat layer with an opening pattern. The thin film transistor array substrate, and the color filter substrates face each other, and a liquid crystal material is injected between the thin film transistor array substrate, and the color filter substrate. The blue color filter has a thickness larger than the red color filter or the green color filter such that the liquid crystal cell gap at the blue color filter is smaller than the liquid crystal cell gap at the red or green color filter.