Abstract:
A display substrate includes a base substrate, a first dielectric layer, a first lattice pattern, a second lattice pattern, and a second dielectric layer. The first lattice pattern is disposed on the first dielectric layer at a first color pixel region. The first lattice pattern includes a plurality of first nano metal wires. The second lattice pattern is disposed on the first dielectric layer at a second color pixel region. The second lattice pattern includes a plurality of second nano metal wires. The second nano metal wires have different dimensions from the first nano metal wires. The second dielectric layer covers the first nano metal wires and the second nano metal wires.
Abstract:
A tetragonal ring shape aperture is formed in the common electrode on one substrate and a cross shape aperture is formed at the position corresponding to the center of the tetragonal ring shape aperture in the pixel electrode on the other substrate. A liquid crystal layer between two electrodes are divided to four domains where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes. The directors in adjacent domains make a right angle. The tetragonal ring shape aperture is broken at midpoint of each side of the tetragon, and the width of the aperture decreases as goes from the bent point to the edge. Wide viewing angle is obtained by four domains where the directors of the liquid crystal layer indicate different directions, disclination is removed and luminance increases.
Abstract:
Two electrodes parallel to each other are formed on one of two substrates, homeotropic alignment films are formed on the substrates and a liquid crystal material having positive dielectric anisotropy is injected between the substrates. When a voltage is applied to the two electrodes, a parabolic electric field between the electrodes drives the liquid crystal molecules. Since the generated electric field is symmetrical with respect to the boundary-plane equal distance from each of the two electrodes, the liquid crystal molecules are symmetrically aligned with respect to the boundary-plane, and the optical characteristic is compensated in both regions divided by the boundary-plane, thereby obtaining a wide viewing angle. The electric field does not exert influences on the liquid crystal molecules on the boundary-plane since the electric field on the boundary-plane is parallel to the substrates and perpendicular to the two electrodes; and thus, it is perpendicular to the liquid crystal molecules. Here, the polarization of the light is changed while passing through the liquid crystal layer and as a result, only a part of the light passes through the polarizing plate The transmittance of the light can be varied by controlling the magnitude of voltage applied to the two electrodes. The alignment direction of the liquid crystal molecules is changed in both regions of a bent portion of the electrodes by forming the electrodes in the saw shape in a pixel or in by pixel, and the retardation of the light is compensated, thereby obtaining a wider viewing angle.
Abstract:
A liquid crystal display comprises two parallel spaced substrates and a liquid crystal layer with negative dielectric anisotropy interposed between the substrates. The ratio d/p, the cell gap d between the substrates to the pitch p of the liquid crystal layer, is equal to or less than 0.3, and the retardation value Δn*d may be in the range of 0.25-0.4. In absence of electric field, the liquid crystal molecules are arranged vertically to the substrates, and when the sufficient electric field is applied, the liquid crystal molecules are parallel to the substrates and twisted by 90° from one substrate to the other.
Abstract translation:液晶显示器包括两个平行间隔的衬底和介于各衬底之间的具有负介电各向异性的液晶层。 基板与液晶层的间距p之间的比d / p,单元间隙d等于或小于0.3,延迟值< Dgr; n * d可以在0.25-0.4的范围内。 在不存在电场的情况下,液晶分子与基板垂直配置,当施加足够的电场时,液晶分子平行于基板并从一个基板扭转90°。
Abstract:
Apertures are formed in the common electrode or in the pixel electrode of a liquid crystal display to form a fringe field. Storage capacitor electrodes are formed at the position corresponding to the apertures to prevent the light leakage due to the disclination caused by the fringe field. The apertures extend horizontally, vertically or obliquely. The apertures in adjacent pixel regions may have different directions to widen the viewing angle.
Abstract:
An apparatus for measuring response time of a display apparatus including a photographing part including a charge coupled device camera and a microscope, an image processing part receiving a picture taken from a photographing part and calculating the response time thereof, and a control part applying a predetermined image signal to the display apparatus and controlling the photographing part to take a picture change of the display apparatus at a predetermined time.
Abstract:
An apparatus for measuring response time of a display apparatus including a photographing part including a charge coupled device camera and a microscope, an image processing part receiving a picture taken from a photographing part and calculating the response time thereof, and a control part applying a predetermined image signal to the display apparatus and controlling the photographing part to take a picture change of the display apparatus at a predetermined time.
Abstract:
The liquid crystal display device includes a liquid crystal display panel, a c-plate mono-axial compensating film, first and second polarizing plates. The liquid crystal display panel includes a first substrate having a first electrode, a second substrate having a second electrode, and liquid crystal interposed between the first and second substrates. The liquid crystal is vertically aligned when no electrical filed is applied between the first and second electrodes. The c-plate mono-axial compensating film is disposed on the first substrate. The first polarizing plate is disposed on the c-plate mono-axial compensating film. The second polarizing plate is disposed on the second substrate. A liquid crystal display device according to an embodiment of the present invention has reduced thickness, weight. Further, the liquid crystal display device has increased luminance and broadened viewing angle.
Abstract:
Pluralities of pixel electrodes having openings and thin film transistors are provided on a lower panel, a common electrode having apertures is provided on an upper panel, and a liquid crystal layer vertically aligned to the two panels is located between the lower and the upper panels. The upper and the lower polarizers having the perpendicular polarizing directions are provided on the outer surfaces of the upper and the lower panels, respectively. The voltage value of a first gray representing the darkest state applied between the pixel electrode and the common electrode is within a voltage range giving a contrast ratio to be equal to or higher than 0.8 with respect to contrast ratio when the voltage applied between the pixel electrode and the common electrode is zero. In this way, the contrast ratio and the color reproduction is improved, so that the image quality of a liquid crystal display is improved.
Abstract:
Liquid crystal display devices include a vertically aligned liquid crystal cell having first and second surfaces that extend opposite each other and contain a liquid crystal material therein having negative dielectric anisotropy. First and second polarizers are attached to the first and second surfaces of the liquid crystal cell, respectively. A first a-plate compensation film and a first c-plate compensation film are provided. These films are disposed between the first surface of the liquid crystal cell and the first polarizer. The direction having a largest refractive index in the first a-plate compensation film is parallel to or perpendicular to a polarizing direction of the first polarizer. Moreover, a difference between a summation of a retardation (nx21−nza1)×da1 of the first a-plate compensation film, a retardation (nxc1−nzc1)×dc1 of the first c-plate compensation film and a retardation of the first and the second polarizers and a retardation due to birefringence of the liquid crystal cell is equal to or less than 15% of the retardation value due to birefringence of the liquid crystal cell.