Abstract:
Various embodiments of MEMS flow modules that both filter and regulate pressure are disclosed. One such MEMS flow module (58) has a tuning element (78) and a lower plate (70). A plurality of springs or spring-like structures (82) interconnect the tuning element (78) with the lower plate (70) in a manner that allows the tuning element (78) to move either toward or away from the lower plate (70), depending upon the pressure being exerted on the tuning element (78) by a flow through a lower flow port (74) on the lower plate (70). The tuning element (78) is disposed over this lower flow port (74) to induce a flow through the MEMS flow module (58) along a non-linear (geometrically) flow path. Preferably, a relatively small change in the pressure exerted by this flow on the tuning element (78) produces greater than a linear change in the flow rate out of the MEMS flow module (58).
Abstract:
A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 &mgr;m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.