MANAGING RUNTIME EXECUTION OF APPLICATIONS ON CLOUD COMPUTING SYSTEMS
    21.
    发明申请
    MANAGING RUNTIME EXECUTION OF APPLICATIONS ON CLOUD COMPUTING SYSTEMS 有权
    管理云计算系统应用的运行执行

    公开(公告)号:US20110276951A1

    公开(公告)日:2011-11-10

    申请号:US12774203

    申请日:2010-05-05

    Applicant: Navendu Jain

    Inventor: Navendu Jain

    Abstract: Instances of a same application execute on different respective hosts in a cloud computing environment. Instances of a monitor application are distributed to concurrently execute with each application instance on a host in the cloud environment, which provides user access to the application instances. The monitor application may be generated from a specification, which may define properties of the application/cloud to monitor and rules based on the properties. Each rule may have one or more conditions. Each monitor instance running on a host, monitors execution of the corresponding application instance on that host by obtaining from the host information regarding values of properties on the host per the application instance. Each monitor instance may evaluate the local host information or aggregate information collected from hosts running other instances of the monitor application, to repeatedly determine whether a rule condition has been violated. On violation, a user-specified handler is triggered.

    Abstract translation: 相同应用程序的实例在云计算环境中的不同的相应主机上执行。 分布式监视器应用程序的实例,以与云环境中的主机上的每个应用程序实例同时执行,从而提供用户对应用程序实例的访问。 监视器应用程序可以从规范生成,规范可以根据属性定义应用程序/云的监视属性和规则。 每个规则可能有一个或多个条件。 在主机上运行的每个监视器实例通过从主机获取关于每个应用程序实例的主机上的属性值的信息来监视该主机上相应的应用程序实例的执行。 每个监视器实例可以评估从运行监视应用程序的其他实例的主机收集的本地主机信息或聚合信息,以重复确定是否违反规则条件。 在违规时,触发用户指定的处理程序。

    Elastic scaling for cloud-hosted batch applications
    23.
    发明授权
    Elastic scaling for cloud-hosted batch applications 有权
    云托管批处理应用程序的弹性缩放

    公开(公告)号:US08997107B2

    公开(公告)日:2015-03-31

    申请号:US13171425

    申请日:2011-06-28

    Applicant: Navendu Jain

    Inventor: Navendu Jain

    CPC classification number: G06F9/46 G06F9/4881 G06F2209/483

    Abstract: An elastic scaling cloud-hosted batch application system and method that performs automated elastic scaling of the number of compute instances used to process batch applications in a cloud computing environment. The system and method use automated elastic scaling to minimize job completion time and monetary cost of resources. Embodiments of the system and method use a workload-driven approach to estimate a work volume to be performed. This is based on task arrivals and job execution times. Given the work volume estimate, an adaptive controller dynamically adapts the number of compute instances to minimize the cost and completion time. Embodiments of the system and method also mitigate startup delays by computing a work volume in the near future and gradually starting up additional compute instances before they are needed. Embodiments of the system and method also ensure fairness among batch applications and concurrently executing jobs.

    Abstract translation: 弹性扩展云托管批处理应用系统和方法,用于在云计算环境中执行用于处理批处理应用程序的计算实例数量的自动弹性缩放。 该系统和方法使用自动弹性缩放来最小化作业完成时间和资源的货币成本。 系统和方法的实施例使用工作负载驱动的方法来估计要执行的工作量。 这是基于任务到达和作业执行时间。 考虑到工作量估计,自适应控制器动态地调整计算实例的数量以最小化成本和完成时间。 系统和方法的实施例还通过在不久的将来计算工作量并在需要之前逐渐启动额外的计算实例来减轻启动延迟。 系统和方法的实施例还确保批量应用程序和并发执行作业之间的公平性。

    SCHEDULING COMPUTING JOBS BASED ON VALUE
    24.
    发明申请
    SCHEDULING COMPUTING JOBS BASED ON VALUE 审中-公开
    基于价值的调度计算工作

    公开(公告)号:US20130179371A1

    公开(公告)日:2013-07-11

    申请号:US13344596

    申请日:2012-01-05

    CPC classification number: G06F9/5027 G06Q30/04

    Abstract: A plurality of requests for execution of computing jobs on one or more devices that include a plurality of computing resources may be obtained, the one or more devices configured to flexibly allocate the plurality of computing resources, each of the computing jobs including job completion values representing a worth to a respective user that is associated with execution completion times of each respective computing job. The computing resources may be scheduled based on the job completion values associated with each respective computing job.

    Abstract translation: 可以获得在包括多个计算资源的一个或多个设备上执行计算作业的多个请求,所述一个或多个设备被配置为灵活地分配多个计算资源,每个计算作业包括表示 与每个相应计算作业的执行完成时间相关联的相应用户的值。 可以基于与每个相应的计算作业相关联的作业完成值来调度计算资源。

    RESOURCE MANAGEMENT FOR CLOUD COMPUTING PLATFORMS

    公开(公告)号:US20120330711A1

    公开(公告)日:2012-12-27

    申请号:US13169890

    申请日:2011-06-27

    CPC classification number: G06Q30/04 G06F9/5072

    Abstract: A system for managing allocation of resources based on service level agreements between application owners and cloud operators. Under some service level agreements, the cloud operator may have responsibility for managing allocation of resources to the software application and may manage the allocation such that the software application executes within an agreed performance level. Operating a cloud computing platform according to such a service level agreement may alleviate for the application owners the complexities of managing allocation of resources and may provide greater flexibility to cloud operators in managing their cloud computing platforms.

    Methods and apparatus for resource allocation in partial fault tolerant applications
    27.
    发明授权
    Methods and apparatus for resource allocation in partial fault tolerant applications 有权
    部分容错应用中资源分配的方法和装置

    公开(公告)号:US08112758B2

    公开(公告)日:2012-02-07

    申请号:US11970841

    申请日:2008-01-08

    CPC classification number: G06F9/5005

    Abstract: Techniques are disclosed for allocation of resources in a distributed computing system. For example, a method for allocating a set of one or more components of an application to a set of one or more resource groups includes the following steps performed by a computer system. The set of one or more resource groups is ordered based on respective failure measures and resource capacities associated with the one or more resource groups. An importance value is assigned to each of the one or more components, wherein the importance value is associated with an affect of the component on an output of the application. The one or more components are assigned to the one or more resource groups based on the importance value of each component and the respective failure measures and resource capacities associated with the one or more resource groups, wherein components with higher importance values are assigned to resource groups with lower failure measures and higher resource capacities. The application may be a partial fault tolerant (PFT) application that comprises a set of one or more PFT application components. The set of one or more resource groups may comprise a heterogeneous set of resource groups (or clusters).

    Abstract translation: 公开了用于在分布式计算系统中分配资源的技术。 例如,用于将应用程序的一个或多个组件的集合分配给一个或多个资源组的集合的方法包括由计算机系统执行的以下步骤。 基于与一个或多个资源组相关联的相应的故障测量和资源容量对一组或多个资源组进行排序。 重要性值被分配给一个或多个组件中的每一个,其中重要性值与组件对应用的输出的影响相关联。 基于每个组件的重要性值和与一个或多个资源组相关联的相应故障测量和资源容量,将一个或多个组件分配给一个或多个资源组,其中具有较高重要性值的组件被分配给资源组 具有较低的失效措施和较高的资源能力。 应用可以是包括一组一个或多个PFT应用组件的部分容错(PFT)应用。 一个或多个资源组的集合可以包括异构的资源组集合(或集群)。

    ENERGY-AWARE SERVER MANAGEMENT
    28.
    发明申请
    ENERGY-AWARE SERVER MANAGEMENT 有权
    能源服务器管理

    公开(公告)号:US20100218005A1

    公开(公告)日:2010-08-26

    申请号:US12391188

    申请日:2009-02-23

    CPC classification number: G06F9/5094 G06F2209/5019 Y02D10/22

    Abstract: The described implementations relate to energy-aware server management. One implementation involves an adaptive control unit configured to manage energy usage in a server farm by transitioning individual servers between active and inactive states while maintaining response times for the server farm at a predefined level.

    Abstract translation: 所描述的实现涉及能量感知服务器管理。 一个实现涉及一种自适应控制单元,其被配置为通过在主动状态和非活动状态之间转换单个服务器来管理服务器场中的能量使用,同时维持服务器场在预定义级别的响应时间。

    Methods and Apparatus for Resource Allocation in Partial Fault Tolerant Applications
    29.
    发明申请
    Methods and Apparatus for Resource Allocation in Partial Fault Tolerant Applications 有权
    部分容错应用资源分配方法与设备

    公开(公告)号:US20090178046A1

    公开(公告)日:2009-07-09

    申请号:US11970841

    申请日:2008-01-08

    CPC classification number: G06F9/5005

    Abstract: Techniques are disclosed for allocation of resources in a distributed computing system. For example, a method for allocating a set of one or more components of an application to a set of one or more resource groups includes the following steps performed by a computer system. The set of one or more resource groups is ordered based on respective failure measures and resource capacities associated with the one or more resource groups. An importance value is assigned to each of the one or more components, wherein the importance value is associated with an affect of the component on an output of the application. The one or more components are assigned to the one or more resource groups based on the importance value of each component and the respective failure measures and resource capacities associated with the one or more resource groups, wherein components with higher importance values are assigned to resource groups with lower failure measures and higher resource capacities. The application may be a partial fault tolerant (PFT) application that comprises a set of one or more PFT application components. The set of one or more resource groups may comprise a heterogeneous set of resource groups (or clusters).

    Abstract translation: 公开了用于在分布式计算系统中分配资源的技术。 例如,用于将应用程序的一个或多个组件的集合分配给一个或多个资源组的集合的方法包括由计算机系统执行的以下步骤。 基于与一个或多个资源组相关联的相应的故障测量和资源容量对一组或多个资源组进行排序。 重要性值被分配给一个或多个组件中的每一个,其中重要性值与组件对应用的输出的影响相关联。 基于每个组件的重要性值和与一个或多个资源组相关联的相应故障测量和资源容量,将一个或多个组件分配给一个或多个资源组,其中具有较高重要性值的组件被分配给资源组 具有较低的失效措施和较高的资源能力。 应用可以是包括一组一个或多个PFT应用组件的部分容错(PFT)应用。 一个或多个资源组的集合可以包括异构的资源组集合(或集群)。

    Allocation of computational resources with policy selection

    公开(公告)号:US09652288B2

    公开(公告)日:2017-05-16

    申请号:US13421959

    申请日:2012-03-16

    CPC classification number: G06F9/50 G06F2209/501

    Abstract: A method for adaptively allocating resources to a plurality of jobs. The method comprises selecting a first policy from a plurality of policies for a first job in the plurality of jobs by using a policy selection mechanism, allocating at least one resource to the first job in accordance with the first policy, and in response to completion of the first job, updating the policy selection mechanism to obtain an updated policy selection mechanism by using at least one processor. Updating the policy selection mechanism comprises evaluating the performance of the first policy with respect to the first job by calculating a value of a metric of utility for the first policy based on conditions associated with execution of the first job and updating the policy selection mechanism based on the calculated value and a delay of execution of the first job.

Patent Agency Ranking