Abstract:
Single transceiver modules are provided at each end of a single communication link such that the need for redundant links is reduced or eliminated. Modules of the invention provide full assurance against disruption of communication due to fiber breakdown, and certain forms of equipment failure, such as the failure of a single receiver. Modules of the invention include multiple reception and transmission ports, and can be applied to any communication link, and require that redundant data be sent by two separate transceivers via two separate fibers. Devices and methods are provided which reduce, or eliminate the need for “client side 1+1 protection.”
Abstract:
A single chamber system or apparatus configured to measure a volume of a person, animal, and/or object, and methods of manufacturing and using the same, are disclosed. The system/apparatus includes a chamber having a door thereon or affixed thereto, and a fixed volume therein when the door is closed; an oscillating membrane or diaphragm in a wall of the chamber; a pressure sensor and/or a pressure transducer configured to measure pressure fluctuations in the chamber; and an oscillation amplitude detector coupled to the oscillating membrane or diaphragm. The chamber generally has a volume sufficient to enclose the person, animal, or object therein. The volume of the chamber generally does not vary with relatively small pressure changes or fluctuations.
Abstract:
An optical multiplexer and methods of making and using the same are disclosed. The multiplexer generally includes a beam splitter and a polarization beam splitter. The beam splitter is generally configured to combine first and second polarized optical signals by reflecting a first polarized optical signal towards a first target and allowing a second polarized optical signal to pass through towards the first target. The polarization beam splitter is generally configured to combine the first and second polarized optical signals with a third polarized optical signal by either (i) reflecting the third polarized optical signal towards a second target and allowing the first and second polarized optical signals to pass through towards the second target, or (ii) reflecting the first and second polarized optical signals towards the second target and allowing the third polarized optical signal to pass through towards the second target.
Abstract:
Methods, circuits, architectures, apparatuses, and algorithms for determining a DC level in an AC or AC-coupled signal. The method generally includes disabling the AC or AC-coupled signal; sampling the disabled AC or AC-coupled signal to obtain sampled DC values of the AC or AC-coupled signal; and calculating the DC level using the sampled DC values of the AC or AC-coupled signal. The present transmitter generally includes an electro-absorption modulated laser (EML); a photodetector; a signal source configured to provide an AC or AC-coupled signal to the EML; and a microcontroller or microprocessor configured to (i) control the signal source, (ii) receive information from the photodetector, and (iii) deactivate the signal source for a predetermined length of time. The circuits, architectures, and apparatuses generally include those that embody one or more of the inventive concepts disclosed herein.
Abstract:
Methods for detecting and/or indicating the presence of valid data and threshold setting and data detection circuitry are disclosed. The threshold setting and data detection circuitry and related methods may be useful for fast and accurate reception of optical signals. The detection circuit generally comprises (i) a first circuit configured to regulate or control a DC offset of a differential input signal, and (ii) a second circuit coupled to the first circuit, the second circuit configured to indicate the presence of a data signal at the differential input signal when a voltage difference between true and complementary nodes of the differential input signal is above a predetermined threshold.
Abstract:
Methods, circuits, architectures, apparatuses, and algorithms for determining a DC level in an AC or AC-coupled signal. The method generally includes disabling the AC or AC-coupled signal; sampling the disabled AC or AC-coupled signal to obtain sampled DC values of the AC or AC-coupled signal; and calculating the DC level using the sampled DC values of the AC or AC-coupled signal. The present transmitter generally includes an electro-absorption modulated laser (EML); a photodetector; a signal source configured to provide an AC or AC-coupled signal to the EML; and a microcontroller or microprocessor configured to (i) control the signal source, (ii) receive information from the photodetector, and (iii) deactivate the signal source for a predetermined length of time. The circuits, architectures, and apparatuses generally include those that embody one or more of the inventive concepts disclosed herein.