Abstract:
Methods and systems are provided for determining an increased likelihood of the occurrence of a cardiac arrhythmia, myocardial ischemia, congestive heart failure and other diseased conditions of the heart associated with elevated sympathetic neural discharges in a patient. The methods and systems comprise monitoring the sympathetic neural discharges of a patient from the stellate ganglia, the thoracic ganglia, or both, and detecting increases in the sympathetic neural discharges. The methods and systems may further comprise delivering therapy to the patient in response to a detected increase in the sympathetic neural discharge, such as delivering one or more pharmacological agents; stimulating myocardial hyperinnervation in the sinus node and right ventricle of the heart of the patient; and applying cardiac pacing, cardioversion or defibrillation shocks. Pharmacologic agents which may be used in connection with the delivery of include those which are known to exert anti-arrhythmic effect and anti-convulsant agents, such as phenytoin, carbamazepine, valproate, and phenobarbitone. Other pharmacologic agents may be used to treat impending myocardial ischemia and other diseased conditions of the heart associated with elevated sympathetic neural discharges.
Abstract:
A method of navigating an autonomous mobile device to a base station is provided. In the method, when a detector detects a navigating signal sent out by the base station, the mobile device rotates in a first direction until the detector fails to detect the navigating signal, and a first time point is set at this time. Then, the mobile device rotates in a second direction opposite to the first direction until the detector fails to detect the navigating signal, and a second time point is set at this time. Afterward, the mobile device rotates in the first direction by a time computed based on the first and second time points to make the detector face the base station, and then, moves toward a direction pointed by the detector.
Abstract:
Methods and systems are provided for determining an increased likelihood of the occurrence of a cardiac arrhythmia, myocardial ischemia, congestive heart failure and other diseased conditions of the heart associated with elevated sympathetic neural discharges in a patient. The methods and systems comprise monitoring the sympathetic neural discharges of a patient from the stellate ganglia, the thoracic ganglia, or both, and detecting increases in the sympathetic neural discharges. The methods and systems may further comprise delivering therapy to the patient in response to a detected increase in the sympathetic neural discharge, such as delivering one or more pharmacological agents; stimulating myocardial hyperinnervation in the sinus node and right ventricle of the heart of the patient; and applying cardiac pacing, cardioversion or defibrillation shocks. Pharmacologic agents which may be used in connection with the delivery of include those which are known to exert anti-arrhythmic effect and anti-convulsant agents, such as phenytoin, carbamazepine, valproate, and phenobarbitone. Other pharmacologic agents may be used to treat impending myocardial ischemia and other diseased conditions of the heart associated with elevated sympathetic neural discharges.
Abstract:
Methods and systems are provided for determining an increased likelihood of the occurrence of a cardiac arrhythmia, myocardial ischemia, congestive heart failure and other diseased conditions of the heart associated with elevated sympathetic neural discharges in a patient. The methods and systems comprise monitoring the sympathetic neural discharges of a patient from the stellate ganglia, the thoracic ganglia, or both, and detecting increases in the sympathetic neural discharges. The methods and systems may further comprise delivering therapy to the patient in response to a detected increase in the sympathetic neural discharge, such as delivering one or more pharmacological agents; stimulating myocardial hyperinnervation in the sinus node and right ventricle of the heart of the patient; and applying cardiac pacing, cardioversion or defibrillation shocks. Pharmacologic agents which may be used in connection with the delivery of include those which are known to exert anti-arrhythmic effect and anti-convulsant agents, such as phenytoin, carbamazepine, valproate, and phenobarbitone. Other pharmacologic agents may be used to treat impending myocardial ischemia and other diseased conditions of the heart associated with elevated sympathetic neural discharges.
Abstract:
Methods and systems are provided for determining an increased likelihood of the occurrence of a cardiac arrhythmia in a patient. The methods and systems comprise monitoring the sympathetic neural discharges of a patient from the left stellate ganglion, the thoracic ganglia, or both, and detecting increases in the sympathetic neural discharges. The methods and systems may further comprise delivering anti-arrhythmic therapy to the patient in response to a detected increase in the sympathetic neural discharge, such as delivering one or more pharmacological agents; stimulating myocardial hyperinnervation in the sinus node and right ventricle of the heart of the patient; and applying cardiac pacing, cardioversion or defibrillation shocks. Pharmacologic agents which may be used in connection with the delivery of anti-arrhythmic therapy include those which are known to exert anti-arrhythmic effect and anti-convulsant agents, such as phenyloin, carbamazepine, valproate, and phenobarbitone.
Abstract:
A system or apparatus is described for reducing the likelihood of the occurrence of ventricular arrhythmia in the heart of a patient having a myocardial infarction and an atrioventricular block, particularly a ventricular arrhythmia of the type potentially leading to Sudden Cardiac Death. The likelihood of the occurrence of the ventricular arrhythmia is reduced by stimulating myocardial hyperinnervation in the sinus node and right ventricle of the heart of the patient. Myocardial hyperinnervation in the sinus node and right ventricle is stimulated by applying electrical stimulation to the right stellate ganglion of the patient or by applying Nerve Growth Factor or other neurotrophic substance to the right stellate ganglion. The apparatus can also be advantageously exploited for use with patients having myocardial infarction but no atrioventricular block and for patients have other heart conditions such as Brugada syndrome.
Abstract:
A method is described for increasing the likelihood of the occurrence of an arrhythmia in a heart, particularly a ventricular arrhythmia of the type leading to Sudden Cardiac Death. The method includes the steps of creating an atrioventricular block in the heart of an animal test subject, inducing a myocardial infarction in the heart of the test subject, and then stimulating myocardial hyperinnervation the test subject. In a specific example described herein, the atrioventricular block is created by ablating the atrioventricular node of the heart using an ablation catheter. The myocardial infarction is induced by ligating the left anterior descending portion of the coronary artery. Myocardial hyperinnervation is stimulated by application of Nerve Growth Factor or other neurotrophic vectors to the left stellate ganglion. The test subject is an adult canine. By creating an atrioventricular block and a myocardial infarction within the heart of an adult canine test subject, then stimulating nerve growth within the left stellate ganglion of the subject using Nerve Growth Factor, it has been found that there is a significant increase in the likelihood of Sudden Cardiac Death arising from ventricular arrhythmias. It is believed that the Sudden Cardiac Death of the test subject arises in a manner very similar to circumstances wherein Sudden Cardiac Death occurs in human patients subject to a previous myocardial infarction, thus, an animal model system for artificially inducing a heart arrhythmia is also disclosed. Thus, the method and animal model system facilitate the collection of data pertinent to conditions within the heart arising prior to Sudden Cardiac Death and for developing and testing therapies intended to prevent Sudden Cardiac Death.
Abstract:
An implanted defibrillator continuously monitors a patient's heart to detect the presence of fibrillation and repeatedly, automatically computes the approximate entropy of a series of data representing the fibrillating heart at a moment in time. The first approximate entropy score that meets a predetermined relation with respect to a predetermined threshold value activates an energy delivery system to defibrillate the heart with a low level shock. The process continues until defibrillation is successful. An external defibrillator incorporates the approximate entropy algorithm to achieve low level defibrillation. A method is disclosed which times the delivery of a defibrillating shock to a fibrillating heart to coincide with the moment that the defibrillation threshold is at a minimum.
Abstract:
An endocardial mapping catheter .�.for locating the ectopic focus of an abnormally functioning heart includes an actuator assembly and an elongated hollow support sheath which extends from the actuator assembly. A plurality of electrical probes are slidingly disposed for independent movement through the sheath, and each probe is attached to the actuator assembly for individual manipulation. A guide is mounted on the end of the sheath opposite the actuator assembly, at the distal end of the sheath, to radially deploy each electrical probe along a separate favorable trajectory as the probe is manipulated to move distally through the sheath. In operation, the probes are initially retracted into the sheath as the guide is positioned inside the left ventricle of the heart. Once the guide is positioned as desired, all of the probes are individually deployed until they have each made contact with the endocardium of the left ventricle. Timed responses are obtained from the probes, and a series of such responses from various guide locations in the left ventricle are recorded to accomplish circumferential endocardial mapping of the heart..!. .Iadd.comprising an elongate flexible support sheath having a proximal end and a distal end and a plurality of electrical probes. Each of the probes has a proximal end and a distal end and is slidably disposed in the support sheath. A guide is disposed on the distal end of the support sheath and has a plurality of passageways. Each of the passageways separately receives one of the probes and is formed with a surface having an arcuately extending distal portion. Actuators are carried by the proximal ends of the probes for deploying the distal ends of the probes from the support sheath. The arcuately extending distal portion of each surface serves to radially deploy the distal end of a probe from the guide along a favorable trajectory from the guide as the probe is individually moved distally through the support sheath..Iaddend.
Abstract:
An endocardial mapping catheter for locating the ectopic focus of an abnormally functioning heart includes an actuator assembly and an elongated hollow support sheath which extends from the actuator assembly. A plurality of electrical probes are slidingly disposed for independent movement through the sheath, and each probe is attached to the actuator assembly for individual manipulation. A guide is mounted on the end of the sheath opposite the actuator assembly, at the distal end of the sheath, to radially deploy each electrical probe along a separate favorable trajectory as the probe is manipulated to move distally through the sheath. In operation, the probes are initially retracted into the sheath as the guide is positioned inside the left ventricle of the heart. Once the guide is positioned as desired, all of the probes are individually deployed until they have each made contact with the endocardium of the left ventricle. Timed responses are obtained from the probes, and a series of such responses from various guide locations in the left ventricle are recorded to accomplish circumferential endocardial mapping of the heart.