NANOVESICLES DERIVED FROM CELL MEMBRANE, AND USE THEREOF

    公开(公告)号:US20210212948A1

    公开(公告)日:2021-07-15

    申请号:US17212131

    申请日:2021-03-25

    Abstract: Disclosed are cell membrane-derived nanovesicles, a method of preparing the nanovesicles, and a pharmaceutical composition and a diagnostic kit using the nanovesicles. The cell membrane-derived nanovesicles may prevent potential adverse effects because intracellular materials (e.g., genetic materials and cytosolic proteins) unnecessary for delivering therapeutic or diagnostic substances are removed from the nanovesicles. In addition, as the nanovesicles may be targeted to specific cells or tissues, therapeutic or diagnostic substances may be predominantly delivered to the targeted cells or tissues, while delivery of the substances may be inhibited. Therefore, the nanovesicles may alleviate suffering and inconvenience of patients by reducing adverse effects of therapeutic substances and by improving efficacy of the substances. In addition, the cell membrane-derived nanovesicles loaded with therapeutic or diagnostic substances and a method of preparing the nanovesicles may be used in vitro or in vivo for therapeutic or diagnostic purposes, or for experimental use.

    DEVICE AND METHOD FOR PROCESSING RECEIVED SIGNAL IN WIRELESS COMMUNICATION SYSTEM

    公开(公告)号:US20210168002A1

    公开(公告)日:2021-06-03

    申请号:US16636131

    申请日:2018-08-03

    Abstract: The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method of a reception device in a wireless environment according to various embodiments of the present disclosure may include receiving a signal from a transmission device, identifying that the received signal is modulated based on at least one designated modulation scheme of modulation schemes, based on identifying, generating second values by applying a first circular shift of a first direction to first values relating to first symbols of the signal, and generating third values by applying a second circular shift of a second direction which is different from the first direction, to conjugate complex values of the first values, generating second symbols of the signal based at least in part on the second values and the third values, and obtaining data about the signal based at least in part on the second symbols.

    Method for visualization of conjunctival cells using fluoroquinolone antibiotics and method for diagnosis of ocular lesions using the same

    公开(公告)号:US10859498B2

    公开(公告)日:2020-12-08

    申请号:US16289536

    申请日:2019-02-28

    Abstract: A method for visualization of conjunctival cells using fluoroquinolone antibiotics and a method for diagnosis of ocular lesions using the same. The method for visualization of conjunctival cells using fluoroquinolone antibiotics includes staining goblet cells of ocular conjunctiva with moxifloxacin, which is a fluoroquinolone antibiotic, and exciting the stained goblet cells with single photons in the near-UV region or in the visible region, followed by fluorescence photographing of the goblet cells, thereby enabling acquisition of morphological information on living tissue without damage to or destruction of the ocular conjunctiva. Specifically, the method for visualization of conjunctival cells includes: a conjunctiva staining step in which ocular conjunctiva is stained with a fluoroquinolone antibiotic; a light irradiation step in which the ocular conjunctiva stained with the fluoroquinolone antibiotic is irradiated with light from a light source; and a conjunctiva photographing step in which the ocular conjunctiva is photographed using an image pickup unit through the fluoroquinolone antibiotic fluorescence-excited by light in the light irradiation step, wherein, in the conjunctiva staining step, goblet cells of the ocular conjunctiva are stained with the fluoroquinolone antibiotic; in the light irradiation step, the light source emits single photons; and, in the conjunctiva photographing step, the image pickup unit photographing the ocular conjunctiva is a high-magnification fluorescence microscope or a slit lamp microscope.

Patent Agency Ranking