Abstract:
A pulse width modulation control circuit and a control method of a pulse width modulation signal are provided. A counter circuit generates a count value according to a phase-locked loop clock, and resets the count value according to a transition point of a synchronization signal. A comparison circuit compares the count value with a duty ratio set value, and sets the pulse width modulation signal to a high level while the count value is less than the duty ratio set value.
Abstract:
A voltage conversion apparatus is provided. A leakage inductance energy recovery circuit is coupled to a primary side auxiliary winding and a control circuit, and recovers leakage inductance energy of a transformer circuit to supply an operating power to the control circuit. Before a main switch is turned on the next time, leakage inductance energy recovered previously is used to lower a cross-voltage of the main switch, so that transient loss of conduction of the main switch is eliminated or reduced, and circuit efficiency is improved.
Abstract:
A light emitting diode driving device and a light emitting diode backlight module are provided. A current is provided to a filter circuit by a controllable current source controlled by a dimming signal, so that the filter circuit generates a corresponding dimming voltage to control current flowing through a LED unit to dim the LED unit.
Abstract:
A light emitting diode driving device and a light emitting diode backlight module are provided. A current is provided to a filter circuit by a controllable current source controlled by a dimming signal, so that the filter circuit generates a corresponding dimming voltage to control current flowing through a LED unit to dim the LED unit.
Abstract:
A power conversion apparatus and a synchronous rectification (SR) circuit thereof are provided. The power conversion apparatus includes a transformer and the SR circuit. A primary winding of the transformer receives an input voltage. A secondary winding of the transformer provides an output voltage to an output terminal. The SR circuit includes a SR transistor and a SR controller. The SR transistor is coupled between the secondary winding and the output terminal and controlled by a control signal. The SR controller is coupled to the SR transistor to receive a first detecting signal, and generates the control signal according to the first detecting signal. When the SR controller detects that the SR circuit is abnormal, the SR controller generates the controller signal to keep the SR transistor at an on state so as to perform an abnormal protection on the SR circuit.
Abstract:
A power conversion apparatus is provided. A detecting circuit detects a current flowing into a boot voltage input pin and converts the current into a corresponding detecting voltage. An adjusting signal generating circuit generates an adjusting signal according to the detecting voltage. A control circuit adjusts control parameters thereof according to the adjusting signal.
Abstract:
A power conversion apparatus including a flyback power conversion circuit, a control chip and a detection auxiliary circuit is provided. The flyback power conversion circuit converts an input voltage into a direct current (DC) output voltage. The control chip generates a pulse width modulation (PWM) signal for controlling operations of the flyback power conversion circuit. The detection auxiliary circuit assists the control chip in obtaining a first detection voltage via a multi-function detection pin of the control chip within an enabling period of the PWM signal, so as to execute an over current detection according to the first detection voltage. Besides, the detection auxiliary circuit assists the control chip in obtaining a second detection voltage via the multi-function detection pin within a disabling period of the PWM signal, so as to execute a valley voltage detection according to the second detection voltage.
Abstract:
A power conversion apparatus is provided. The power conversion apparatus includes a transformer, a synchronous rectification (SR) transistor and an SR control circuit. A first terminal of a primary side of the transformer receives an input voltage. A first terminal of a secondary side of the transformer provides an output voltage to a load. A first drain/source terminal of the SR transistor is coupled to a second terminal of the secondary side of the transformer. A second drain/source terminal of the SR transistor is coupled to a first ground terminal. A gate terminal of the SR transistor receives a control signal. The SR control circuit receives a signal of the first drain/source terminal of the SR transistor to determine statuses of the load and generate the control signal. When the load is a light load, the SR control circuit enters a power-saving mode and turns off the SR transistor.
Abstract:
A power conversion apparatus including a flyback power conversion circuit, a control chip and a detection auxiliary circuit is provided. The flyback power conversion circuit receives and converts an AC input voltage into a DC output voltage. The control chip generates a PWM signal in response to a power supply requirement to control operations of the flyback power conversion circuit, and the control chip has a multi-function detection pin. The detection auxiliary circuit assists the control chip to obtain an auxiliary voltage related to the DC output voltage via the multi-function detection pin, and thereby determines a transition time of the PWM signal according to the auxiliary voltage. Besides, the detection auxiliary circuit assists the control chip to execute detections of an over temperature protection (OTP) and an over voltage protection (OVP) via the multi-function detection pin respectively within first and second detection phases.
Abstract:
A power supply with low voltage protection provides an output voltage. The power supply includes a driving switch and a control unit. The control unit generates a control signal with a duty cycle. The driving switch receives the control signal to drive the output voltage of the power supply. The control unit enables an under-voltage protection mode when the control unit detects that the output voltage is less than a threshold output voltage value and the duty cycle is less than a maximum duty cycle value. The control unit disables the under-voltage protection mode when the control unit detects that the output voltage is less than the threshold output voltage value and the duty cycle reaches to the maximum duty cycle value.