Abstract:
An imaging system (100) includes a radiation source (108) that emits radiation that traverses an examination region (106) and a detection system (114) that detects radiation that traverses the examination region (106) and generates a signal indicative thereof. The detection system (114) includes a first detector array (1141-114N) and a second detector array (1141-114N). The first and second detector arrays (1141-114N) are separately distinct detector arrays and at least one of the detector arrays (1141-114N) is moveable with respect to the radiation beam. A reconstructor (116) reconstructs the signal and generates volumetric image data indicative thereof.
Abstract:
A radiographic imaging apparatus (10) comprises a primary radiation source (14) which projects a beam of radiation into an examination region (16). A detector (18) converts detected radiation passing through the examination region (16) into electrical detector signals representative of the detected radiation. The detector (18) has at least one temporally changing characteristic such as an offset B(t) or gain A(t). A grid pulse means (64) turns the primary radiation source (14) ON and OFF at a rate between 1000 and 5000 pulses per second, such that at least the offset B(t) is re-measured between 1000 and 5000 times per second and corrected a plurality of times during generation of the detector signals. The gain A(t) is measured by pulsing a second pulsed source (86, 100, 138) of a constant intensity (XRef) with a second pulse means (88). The gain A(t) is re-measured and corrected a plurality of times per second during generation of the detector signals.
Abstract:
A gantry (10) includes a large diameter bearing having an outer race (12) and an inner race (16) which surrounds an examination region. An x-ray tube (18) and collimator (52) are mounted to the inner race, as is a flat panel detector (20) and a mechanical mechanism (50) for moving the flat panel detector closer to and further from the examination region. A timing and control circuit (30) controls a motor (22) which indexes the inner race around the examination region, an x-ray power supply (32) which pulses the x-ray tube in a fluoroscopic mode at discrete positions around the examination region, and a read out circuit (34) which reads out a frame of data after each pulse of the x-ray tube. The read out frames of data are stored in a frame memory (36) and reconstructed by a reconstruction processor (38) into a volumetric image representation for storage in a volume image memory (40). A video processor (42) reformats individual frames from frame memory (36) or selected portions of volume image representation from the volume image memory (40) into appropriate format for display on a video monitor (44). A magnification control (54) coordinates adjustment of the collimator (52) and movement of the flat plate detector toward and away from the examination region.
Abstract:
A radiographic scanner (10) has a stationary gantry portion (12) defining a subject receiving region (16) and a rotating gantry portion (20) on which an imaging x-ray tube (22) is mounted. The rotating gantry portion (20) is rotatably mounted to the stationary gantry portion (12) for rotation about the subject receiving region (16). A slip ring assembly extending around the subject receiving region (16) connected with the stationary and rotating gantry portions, includes a scintillating optical fiber (44) mounted around the patient receiving region (16) to one of the rotating and stationary gantry portions. A communication x-ray tube (40) is mounted to the other gantry portion and directed such that radiation therefrom enters the scintillating optical fiber (44) from a lateral direction. The scintillating optical fiber (44) converts the incident x-rays (52) to light (58) and transmits the light (58) along its longitudinal axis. The scintillating optical fiber (44) is enclosed in a protective sheathing (50) that is opaque to optical radiation which protects the fiber from damage and eliminates noise, inaccuracy, and false signals caused by ambient and stray light entering the fiber.
Abstract:
An apparatus and method is disclosed for facilitating calibration of a dual energy digital radiography system having a focused multi-element detector assembly. The apparatus includes two sets of calibration elements, each set made of a different basis material. Each calibration element defines a segment of an annulus and is positionable between the system source and detector such that the center defined by the annulus is substantially coincident with the focal spot of the source. Within individual sets, the thicknesses of the respective member elements differ one from another in accordance with a binary progression. Each of the calibration elements is positioned and sized such that it intercepts and attenuates all radiation which ultimately falls upon the detector.
Abstract:
A radiographic apparatus (10) includes an x-ray tube (16), an off-focal radiation collimator (20), a shutter (22), and a primary beam defining collimator (24) between the x-ray tube and patient receiving region (14). The off-focal collimator is mounted within a collar (48) which surrounds an x-ray port (36) of the x-ray tube. The tube port is sealed from the atmosphere by an aluminum window (46). A plate (62) of a radiation blocking material is rotatably mounted by a bearing (70) within the collar closely adjacent the aluminum window. By rotating the moveable plate, aperture or radiation passing slots or portions (62, 64) of different sizes are selectively brought into alignment between a focal spot (34) of the x-ray tube and a radiation passing region or slot (52) of a stationary plate (50) at the distal end of the collar. The aligned slots block the passage of off-focal radiation. Moreover, rotating slots of different sizes into alignment changes the size or angle of the x-ray fan beam.
Abstract:
An improved computed tomography radiation detector is disclosed. One embodiment includes first and second layers of crystalline scintilation material mutually aligned in a path of x-rays to be detected, to receive the x-rays in sequence. The layer upstream in the x-ray path comprises a scintillation material having a relatively high efficiency for converting x-ray energy to light. The downstream one of the layers comprises a scintillation material having a relatively lower efficiency for x-ray/light conversion. A photodiode is positioned to view both scintillation layers simultaneously and to respond to scintillations in either or both. Scintillation crystal material surfaces can be coated with reflective material to enhance the effects of their scintillations. The photodiode thus combines x-ray indicating scintillations from both crystals while in analog form. The detector exhibits enhanced response to lower energy x-rays. Another embodiment comprises a photodiode and an optically coupled scintillation crystal, with the photodiode upstream in the x-ray beam path relative to the crystal.
Abstract:
A xenon concentration phantom (A) is mounted in a CT scanner (B). A xenon/oxygen breathing gas mixture from a breathing gas supply system is (C) circulated through an analysis chamber (12) of the phantom before a human scan is commenced. The CT scanner measures the amount of radiation absorption attributable to the gas in the analysis chamber, which absorption varies in proportion to the concentration of xenon gas. The measured radiation absorption is converted into a precise measurement or indication of the xenon concentration of the breathing gas. The precise xenon concentration measurement may be utilized to calibrate xenon gas detectors (80, 100) in the breathing gas supply system or to calibrate xenon concentration dependent diagnostic data generated during a subsequent patient scan while the patient is breathing the breathing gas.
Abstract:
Method and apparatus for a computed tomography patient localization scan. A source of radiation that orbits a patient during a normal computed tomography scan is fixed relative an array of radiation detectors. The patient is then moved in a direction generally perpendicular to the plane of the radiating source and array to obtain a first shadowgraph data set. The source is orbited a small amount and the patient is again moved relative the source and detector array to obtain a second shadowgraph set of data. The two sets of data are then interleaved to obtain a shadowgraph image having higher resolution than either the first or second shadowgraph.
Abstract:
A detector tile (116) of an imaging system (100) includes a photosensor array (204) and electronics (208) electrically coupled to the photosensor array (204), wherein the electronics includes a dose determiner (402) that determines a deposited dose for the detector tile (116) and generates a signal indicative thereof. In one non-limiting instance, this signal is utilized to correct parameters such as gain and thermal coefficients, which may vary with radiation dose.