Abstract:
Microelectromechanical systems based spatial light modulators (SLMs), and display systems and methods for operating the same are described. Generally, the SLM includes a linear array of a number of electrostatically deflectable ribbons suspended over a surface of a substrate. Each ribbon includes a split-ribbon portion with a plurality of diffractors, each diffractor including a first light reflective surface on a linear portion of the split-ribbon portion and an opening through which a second light reflective surface affixed to the substrate is exposed. The first light reflective surface and the second light reflective surface have equal areas, and when one or more of the ribbons is deflected towards the surface of the substrate a coherent light reflected from the first light reflective surface is brought into constructive or destructive interference with light reflected from the second light reflective surface. The display system can include a projector or a head mounted unit.
Abstract:
A spatial light modulator (SLM) and methods of operating the same are described. The SLM includes an array of pixels formed on a substrate, each pixel including a one or more electrostatically operable optical modulators, a receiver, a memory coupled to the receiver, and a driver including a number of drive channels coupled to the memory. Each of the drive channels is coupled to one of the pixels to drive the optical modulators in the pixel to one of a number of discrete modulation levels. The receiver receives reduced depth programming data in a predetermined sequence whereby the location of the programming data in the received data sequence implies the associated pixel address within the pixel array. The memory includes look-up-table circuitry to convert the reduced depth programming data to full depth programming data. Generally, the receiver, memory and driver are integrally formed on the same substrate with the array.
Abstract:
A high power handling optical modulator and methods of fabricating the same are described. The method includes forming a number of electrostatically deflectable elements over a surface of a substrate, and forming a non-metallic, multilayer optical reflector over each electrostatically deflectable element. The multilayer optical reflector includes at least a first layer of high index material having a high index of refraction, a second layer of a low index material having a low index of refraction formed over the first layer, and a third layer of high index material also having a high index of refraction formed over the second layer. Generally, the high index materials and low index material are selected and deposited to maintain planarity of the multilayer optical reflector at operating temperature. In one embodiment, the high and low index materials include silicon-germanium and air respectively. Other embodiments are also described.
Abstract:
Laser-based material processing systems including a Micro-Electromechanical System devices (MEMs) based reflective, optical modulator with dielectric mirrors for high power handling and methods of manufacturing and using the same are described. Generally, the system includes a workpiece support, a laser, a workpiece support, a laser, a MEMs based reflective, optical modulator to modulate a beam generated by the laser; and imaging optics to direct modulated light from the optical modulator onto a workpiece on the workpiece support. The optical modulator includes a number of surfaces with dielectric mirrors formed thereon to modulate the beam generated by the laser. Other embodiments are also described.
Abstract:
A spatial light modulator (SLM) module and methods of designing, manufacturing and using the same are provided. In one embodiment, the SLM module comprises a diffractive, diffractive SLM formed on a substrate, the SLM including a plurality of pixels each including a plurality of electrostatically deflectable actuators, and a driver including a number of drive channels each coupled to one of the plurality of electrostatically deflectable actuators. Each of the drive channels include at least one internal digital-to-analog converter (DAC) integrally formed on the same substrate as the SLM. In one embodiment, the DAC is a multi-slope charge integrating DAC. In other embodiments, the driver includes circuitry to test each of the drive channels, and a spare drive channel that can be switched in to replace a defective drive channel.
Abstract:
A display apparatus projects a two dimensional image onto a display screen and includes illumination optics, a light modulator, separating optics and scanning optics. The light modulator is optically coupled to the illumination optics such that in operation the illumination optics illuminate the light modulator with an off-axis illumination and further such that the light modulator directs light onto an optic axis for a bright pixel, thereby forming on-axis light, and away from the optic axis for a dark pixel, thereby forming off-axis light. The separating optics are coupled to the light modulator and separate the off-axis and on-axis light where the on-axis light produces a real and virtual image that is displayed by the projection and scanning optics.
Abstract:
A system and method are provided for spectral shaping of light from a broadband source including multiple wavelengths. The system includes a beam splitter (BS) to receive and transmit an input beam, a dispersive element to disperse the input beam into dispersed beams separated by wavelength, and optic-elements to direct the dispersed beams onto a spatial light modulator (SLM). The SLM selectively modulates the dispersed beams reflected from the SLM, and the optic elements transmit a 0th-order of the reflected light through the dispersive element, which recombines the beams to form a reflected beam directed toward the BS. The BS separates the reflected beam from the input beam and directs it to an optical output of the system. The SLM includes multiple electrostatically deflectable reflective ribbons suspended over a reflective surface of a substrate, wherein the ribbons are separated by a distance equal to a width of the ribbons.
Abstract:
A system and method are provided for spectral shaping of light from a broadband source using a linear spatial light modulator (SLM). The system includes an illumination source generating light including a plurality of wavelengths, a lens to collimate the light and an aperture to define its angular spread, a diffraction grating to disperse the beam by wavelength, and a focusing element to focus the dispersed beams from the diffraction grating onto a plurality of pixels of the SLM. The SLM is configured to individually modulate the dispersed beams by diffracting light output therefrom into higher orders, where a diffraction angle of output light is greater than an input cone angle of incoming light from the illumination source.
Abstract:
A Micro-Electromechanical System (MEMS) device having improved thermal management, and methods of fabricating the same are described. Generally, the device includes a piston layer suspended over a surface of a substrate by posts at four corners thereof, the piston layer including an electrostatically deflectable piston and a number of flexures through which the piston is coupled to the posts. A faceplate including an aperture through which the piston is exposed is suspended over the piston layer. Thermal sinking structures project from the surface of the substrate and extend through void spaces between the posts, the flexures and the piston of the piston layer to provide thermal management of the piston layer. The thermal posts substantially fill the void spaces without contacting either the flexures or the piston, and without altering a deflection gap between the piston and the surface of the substrate. Other embodiments are also described.
Abstract:
A system including two dimensional, microelectromechanical system (MEMS) based spatial light modulators and anamorphic optics for improved contrast is provided. Generally, the system comprises an array of modulators having a plurality of pixels along a longitudinal axis, each pixel comprising a plurality of modulators along a transverse axis of the array. An illumination source including a laser and anamorphic optics for focuses light from the laser onto the array, and imaging optics focus modulated light from the array onto an image plane. The anamorphic optics are configured to provide a transverse numerical aperture (NA) along the transverse axis of the array that is smaller than a diffraction angle of the modulated light reflected from the array along a transverse axis of the image plane, and a longitudinal NA along the longitudinal axis of the array that is greater than the transverse NA. Other embodiments are also provided.