Abstract:
A circuit for generating an internal source voltage signal responsive to an external source voltage signal in a semiconductor memory device prevents malfunction and extends the lifetime of the device by clamping the internal source signal if the device is in a normal operating mode when the external source signal is in a stress operating range. When the device is placed in a test mode, the circuit allows the internal source signal to increase in proportion to the level of the external source signal when the external source signal is in a stress operating range. The circuit includes in internal source voltage generator, which always clamps the internal source signal when the external source signal is in a normal operating range, and a pull-up unit which is activated in response to a control signal. The control signal is enabled when the device is placed in a test mode by combining external timing signals.
Abstract:
Self repairing integrated circuit memory devices include the plurality of normal memory cells, plurality of spare memory cells and a plurality of spare substituting circuits. A spare substituting circuit is responsive to a defective normal memory cell address which is programmed therein, to substitute at least one spare memory cell for at least one defective normal memory cell which is located at the defective normal memory cell address which is programmed therein. A sequential spare substituting circuit selector is connected to the spare substituting circuits and is responsive to a defect indication signal, to sequentially select a respective one of the spare circuits for programming with sequential ones of the defective normal memory cell addresses. An alarm signal is generated if all of the spare substituting circuits have been used. If a defect is present in at least two normal memory cells in different rows and the same column, a spare column is substituted rather than two spare rows. Also, if all rows substituting circuits have been programmed spare column substituting circuits are used. Defective addresses are programmed using electrically programmable fuses preferably polycrystalline silicon elongated fuses.
Abstract:
A memory module having parity and capable of performing a read-modify-write (RMW) operation is provided. The memory module has data input and output pins for processing a plurality of data bits and a parity bit and is comprised of one semiconductor memory device which processes the parity bit and a plurality of semiconductor memory devices which each process a plurality of data bits. All of the memory devices include at least one data input/output pin for receiving and supplying data and at least one control pin for receiving a control signal. The memory module according to the present invention is simply constructed so as to yield high integration in a semiconductor integrated circuit, and is capable of high-speed applications.
Abstract:
A circuit for generating a back bias voltage for use in a semiconductor memory device is disclosed, wherein the back bias voltage is clamped within a desired voltage level. The circuit comprises an oscillator for generating a sequence of square waves having a specified frequency, a buffer adapted to be connected with the output of said oscillator and for buffering the output of said oscillator into the square waves having a level of a source supply voltage, a charge pump circuit for providing a back bias voltage by receiving the output of said buffer, and a clamping circuit adapted to be coupled in parallel between the output of said charge pump circuit and a ground level and for clamping within a specified range the back bias voltage being provided by said charge pump circuit in accordance with variations of said source supply voltage.