Abstract:
A magneto-optical information recording/reproducing apparatus in which a magneto-optical information recording medium at least including a first magnetic film having perpendicular magnetic anisotropy, and a second magnetic film to which information recorded on the first magnetic film is transferred by irradiation of a laser beam, is used so that a readout laser beam is irradiated onto the second magnetic film to thereby readout the information transferred to the second magnetic film. The apparatus includes a 2-split detection circuit for receiving the readout laser beam reflected from the second magnetic film of the recording medium, and a subtraction circuit in which output signals of the two detection elements of the 2-split detection circuit are subtracted from each other to generate a differential signal. The apparatus further comprises a circuit for making a spot of the laser beam jump one track before readout of the information from the magneto-optical information recording medium, a positive/negative balance correction circuit for detecting an amplitude ratio between positive and negative side amplitudes in a track jump signal generated in the differential signal from the subtraction circuit in response to the track jump to thereby output a correction signal in accordance with the amplitude ratio, and an addition circuit for adding the correction signal to the differential signal to thereby generate a tracking error signal for tracking control used in readout of the magneto-optical information from the magneto-optical information recording medium.
Abstract:
A magneto-optical recording and/or reproducing apparatus having a magnetic head and first and second optical systems for recording on and/or reproducing from first and second magneto-optical media. The first optical system has a first objective lens, and the second optical system has a second objective lens whose numerical aperture differs from that of the first objective lens. The magnetic head is arranged near the second objective lens. The first and second optical systems are arranged such that the respective one of the first and second magneto-optical media which is currently being subject to recording or reproducing is positioned between the first and second optical systems.
Abstract:
A magneto-optical disc system includes a magneto-optical disc 40 with a light-transmitting cover layer 41, an objective lens 2 for bundling or focusing a laser beam onto a magnetic recording layer 43 of the magneto-optical disc 40 for recording information thereon and/or reproducing information therefrom, and a magnetic field generating unit 9 having a coil pattern 7 arranged on an optical glass element 8. The thickness t.sub.2 of the light-transmitting cover layer 41 falls within the range of 0.6 to 0.1 mm, and the numerical aperture (NA) of the objective lens 2 falls within the range of 0.55 to 0.70.
Abstract:
An magneto-optical disc system includes an magneto-optical disc with a light-transmitting cover and an objective lens for bundling or focusing a laser beam on a recording layer of the magneto-optical disc in order to perform recording and/or reproduction. The thickness t.sub.2 of the light-transmitting cover is set to fall within the range of 0.6 to 0.1 mm, the numerical aperture (NA) of the objective lens is set to fall within the range of 0.55 to 0.70 and the wavelength of the light beam is selected to be between 635 and 680 nanometers.
Abstract:
An optical disc system using an optical disc with a light-transmitting cover and an objective lens for bundling or focusing a laser beam on a recording layer of the optical disc in order to perform recording and/or reproduction. The thickness t.sub.2 of the light-transmitting cover is set to fall within the range of 0.6 to 0.1 mm, the numerical aperture (NA) of the objective lens is set to fall within the range of 0.55 to 0.70 and the wavelength of the light beam is selected to be between 635 and 650 nanometers.
Abstract:
An optical disc system using an optical disc with a light-transmitting cover and an objective lens for bundling or focusing a laser beam on a recording layer of the optical disc in order to perform recording and/or reproduction. The thickness t.sub.2 of the light-transmitting cover is set to fall within the range of 0.6 to 0.1 mm, the numerical aperture (NA) of the objective lens is set to fall within the range of 0.55 to 0.70 and the wavelength of the light beam is selected to be between 635 and 650 nanometers.
Abstract:
A magneto-optical disc system includes a magneto-optical disc with a light-transmitting cover, an objective lens for bundling or focusing a laser beam on a magnetic recording layer of the magneto-optical disc in order to perform recording and/or reproduction, and a magnetic field generating unit obtained by forming a coil pattern in an optical glass. In the above system, the thickness t.sub.2 of the light-transmitting cover is set to fall within the range of 0.6 to 0.1 mm, and the numerical aperture (NA) of the objective lens is set to fall within the range of 0.55 to 0.70, so as to obtain high-density recording and/or reproduction by permitting the lens to be quite close to the actual recording layer.
Abstract:
A magneto-optical recording and reproducing system in a magneto-optical disk capable of being overwrite recorded by applying a magnetic field to a photo-sensitive recording layer and irradiating a laser beam onto the recording layer. A track pitch and a diameter of the laser beam are set so that recording tracks to be formed by irradiation of the laser beam overlap, each other between adjacent tracks. Accordingly, data recording density of the magneto-optical disk, especially in a radial direction thereof, can be increased.
Abstract:
A magneto-optical pickup apparatus includes an objective lens for focusing a laser beam emitted from a laser device onto a magneto-optical recording medium, driving coils, on which the objective lens is mounted, for driving the objective lens in focusing and tracking directions, and a plate arranged at an end portion of the driving coils between the objective lens and the magneto-optical recording medium. The plate is formed with a coil pattern for generating a magnetic field to be applied to the magneto-optical recording medium, and can allow a laser beam transmitted through the objective lens to pass therethrough.
Abstract:
In a recording apparatus employing a magneto-optical effect, and in which a light beam irradiates a region of a magneto-optical disc while a magnetic field acts on the disc at such region and is modulated by coded data in accordance with a predetermined modulation system; the light beam is intermittently energized by drive pulses, and the energizing of the light beam is inhibited at times corresponding to transitions in the coded data when the ratio Tmin/Tw is greater than 1, in which Tmin is the minimum length between transitions in the coded data and Tw is a window margin for the modulation system employed for modulating the magnetic field.