Abstract:
In a method to cold-start a fuel cell system at sub-zero temperatures, the fuel cell system comprises a fuel cell stack, upstream of which is connected a heating device to heat a cooling agent to be circulated by a coolant pump. To reduce the demand for stored electrical energy, the cold fuel cell stack is operated at such a capacity that it generates power that is sufficient only to operate the heating device and the coolant pump. The power generated by the fuel cell stack is used to operate the heating device for heating the cooling agent as well as the coolant pump, whereby the coolant pump circulates the cooling agent between the fuel cell stack and the heating device. The heating device is switched off as soon as the fuel cell stack reaches a preset temperature that is higher than the original temperature.
Abstract:
The subject of the present invention is a fuel cell system having at least one fuel cell which has an anode, a cathode, and a membrane element. Two electrode chambers are disposed in the fuel cell, and the electrode chambers are an anode chamber and a cathode chamber. An educt flows into the anode chamber and into the cathode chamber by means of a respective incoming stream. According to the invention, it is provided that at least one compensation region is disposed on the end of the membrane element and serves solely to moisten and/or temper at least one of the incoming streams.
Abstract:
A fuel cell system includes at least one fuel cell stack designed to react reactants for current generation, a cold start detection apparatus for detecting a cold start state of a fuel cell stack and a load which may be connected to the fuel cell stack 2. A control device is designed to connect the load when the fuel cell stack 2 is in the cold start state. The supply of the reactants for the fuel cell stack is conformed to connection of the load, and the control device is designed with software and/or circuitry so as to vary the connected load in one or more step load changes in response to detection of the cold start state of the fuel cell stack.
Abstract:
A fuel cell system (10) includes at least one fuel cell (12) provided with an anode area (14) and a cathode area (18) which is separated from the anode area (14) by an electrolyte (16) and a first liquid separator (42). A liquid out (60) of the first liquid separator (42) is connected to a second liquid separator (44) or cathode gas discharge line (24) via a first bypass line (78).
Abstract:
A method of ceasing operation of a fuel cell system comprises terminating a supply of a hydrogen-containing fuel to a fuel cell stack, drawing a potential of the fuel cell stack to a load to substantially consume hydrogen in the fuel cell stack, introducing a dose of air to at least a portion of anode electrode layers from at least one of an air supply source and an external source, and reacting hydrogen and oxygen in the anode electrode layers to consume substantially all the hydrogen remaining in the fuel cell stack.
Abstract:
A coolant circuit for cooling a fuel cell stack for a motor vehicle includes a heating device for raising the temperature of the coolant and a cooling device for lowering the temperature of the coolant. The cooling device and the heating device are fluidically connected in series in the coolant circuit. The cooling device is constructed as an external cooler for the vehicle.