Abstract:
This disclosure generally relates to digital image and video signal processing, and more particularly to methods and systems for dynamic brightness correction. In one embodiment, an electronic circuit configured to perform an image correction method is disclosed, the method comprising: obtaining a pixel value of a color space component from an image; determining whether to perform mid-tone correction for the pixel value of the color space component; calculating, via the electronic circuit, a corrected pixel value based on the determination of whether to perform the mid-tone correction for the pixel value of the color space component; and outputting the corrected pixel value. The color space component may be one of: an Intensity component from a Hue-Saturation-Intensity color space; a Value component from a Hue-Saturation-Value color space; a Lightness component from a Hue-Saturation-Lightness color space; and a Brightness component from a Hue-Saturation-Brightness color space.
Abstract:
This disclosure generally relates to encoding, transmission, and decoding of digital video, and more particularly to methods and systems for minimizing decoding delay in distributed video coding (DVC). In one embodiment, a video decoding method is disclosed, comprising: obtaining side information; obtaining a syndrome bit chunk corresponding to a non-key-frame bit-plane; performing, via one or more processors, at least one non-key-frame bit-plane channel decoding iteration using the side information and the syndrome bit chunk; generating a decoded bit-plane via performing the at least one non-key-frame bit-plane channel decoding iteration; determining a bit error rate measure for the decoded bit-plane; determining, based on the bit error rate measure, a number of additional syndrome bit chunks to request; and providing a request for the additional syndrome bit chunks.
Abstract:
System and method for dynamically and adaptively enhancing user chosen colors on a frame-by-frame basis of an incoming digital video signal using a saturation gain is disclosed. In one embodiment, a saturation 1D-histogram for each of the user chosen colors is formed using a substantially current video frame. Further, a saturation gain, adaptive to slow or fast moving image sequences, is dynamically computed for each of the user chosen colors of the substantially current video frame using the corresponding saturation 1D-histogram of the substantially current video frame and corresponding saturation 1D-histogram information and a saturation gain of a substantially previous video frame. Furthermore, which one of the dynamically computed saturation gains associated with the user chosen colors to be applied on a per-pixel basis is determined. The determined saturation gain is applied to saturation component on the per-pixel basis in the substantially current or next video frame.