Abstract:
Systems and methods which provide a bulkhead anchor configuration in which an anchor body includes flexure finger members and a radial bulkhead operable in cooperation to impart a radial compressive force to a corresponding lead body are described. A first portion of a bulkhead anchor body may comprise a plurality of flexure finger members disposed in a corolla configuration forming an anchor lumen through which a lead body may be inserted. A second portion of the bulkhead anchor body may comprise a radial bulkhead having a flexure profile configured to operatively engage the flexure finger members. A locking mechanism may be used to retain the first and second portions of the bulkhead anchor in their relative positions such that the radial compressive force is maintained upon the lead body indefinitely.
Abstract:
Systems and methods which provide retractable anchor configurations for medical device leads are described. A retractable anchor may implement a retractable distention composed of a resilient material. The retractable distention may be distended when in a neutral state and may be contracted when in a biased state. A biasing bulkhead may be configured to receive a bias force sufficient to retract the retractable distention. A stylet may be inserted into an axial lumen of a medical device lead having retractable tip anchor structure and may engage the biasing bulkhead to apply a bias force. A stylet knob may be configured to interface with the stylet and provide bias force to be transferred to the biasing bulkhead of the retractable tip anchor structure. Locking the stylet knob on the medical device lead may maintain the bias force applied to the biasing bulkhead until the stylet knob is unlocked.
Abstract:
A multi-lead stimulation lead connector for facilitating electrical and mechanical connectivity between one or more stimulation leads and a pulse generator, e.g., an EPG used in a test stimulation system. One or more cam lock assemblies are disposed in a housing, each cam lock assembly comprising a cam knob and a cam shaft and having a longitudinal channel defined therein for accepting a proximal end of a respective stimulation lead, the proximal end having a plurality of terminal contact electrodes. By actuating a rotational movement of the cam knob, the cam lock assembly is unlocked in a first direction for guiding the proximal end and locked in a second direction for securely holding the proximal end and effectuating electrical connectivity with a plurality of conductors encapsulated in a cable for interfacing with the EPG.
Abstract:
A neurostimulation stimulation lead and method of fabrication are provided. First and second electrode sets include segmented electrodes joined with linking portions, bodies having a mandrel lumen, and a wire retention fixture. The second electrode set includes a wire pass through channel. The mandrel lumens, wire retention fixtures and wire pass through channel are monolithically formed in the corresponding bodies. The first and second wire filers are directly seated into the corresponding wire retention fixtures, such that the wire retention fixtures frictionally secure and retain the first and second wire filers. The first and second electrode sets are arranged in line with one another such that an intermediate portion of the first wire filer extends through the wire pass through channel in the second electrode set. The method removes the linking portions of the first and second electrode sets to unlink the segmented electrodes.
Abstract:
A neurostimulator lead including an elongated lead body having stimulating and proximal end portions and a center axis extending therebetween. The lead body includes an inner tubing that extends along the center axis. The inner tubing includes wire conductors that extend between the stimulating and proximal end portions. The lead also includes multiple electrode-inductor assemblies that are positioned along the stimulating end portion and spaced apart from one another along the center axis. Each of the electrode-inductor assemblies includes an inductor coil that is electrically coupled to one of the wire conductors and an electrode that is located proximate to the inductor coil. The electrode and the inductor coil are electrically joined, and the inductor coil is configured to prevent a flow of induced current that occurs when the lead is exposed to external magnetic fields.