Abstract:
A device includes a housing defining part of an interior volume and an opening to the interior volume; a cover mounted to the housing to cover the opening and further define the interior volume; a display mounted within the interior volume and viewable through the cover; and a system in package (SiP) mounted within the interior volume. The SiP includes a self-capacitance sense pad adjacent a first surface of the SiP; a set of solder structures attached to a second surface of the SiP, the second surface opposite the first surface; and an IC coupled to the self-capacitance sense pad and configured to output, at one or more solder structures in the set of solder structures, a digital value related to a measured capacitance of the self-capacitance sense pad. The SiP is mounted within the interior volume with the first surface positioned closer to the cover than the second surface.
Abstract:
A touch sensitive device that detects the occurrence of an electrostatic discharge event on the device by analyzing an acquired touch image for characteristics associated with the occurrence of an ESD event is provided. An acquired touch image is analyzed for characteristics that differentiate it from a touch image generated by a user input and are correlated with an expected touch image generated by an ESD event.
Abstract:
Roll-to-roll processes for manufacturing touch sensors on a plastic base film are provided. The touch sensors can be deposited on the base film using various patterning techniques. One or more shorting bars can also be patterned onto the base film to couple together traces, such as drive lines, sense lines, conductive traces, and the like, of the touch sensor to prevent a potential difference from forming between traces due to static buildup during the manufacturing process. After the touch sensor is fully formed on the base film, the touch sensor can be removed from the base film using lithography or a physical cutting process. The removal process can separate the touch sensor from the one or more shorting bars, thereby uncoupling the traces of the touch sensor.
Abstract:
A transmitter device for an inductive energy transfer system can include a DC-to-AC converter operably connected to a transmitter coil, a first capacitor connected between the transmitter coil and one output terminal of the DC-to-AC converter, and a second capacitor connected between the transmitter coil and another output terminal of the DC-to-AC converter. One or more capacitive shields can be positioned between the transmitter coil and an interface surface of the transmitter device. A receiver device can include a touch sensing device, an AC-to-DC converter operably connected to a receiver coil, a first capacitor connected between the receiver coil and one output terminal of the AC-to-DC converter, and a second capacitor connected between the receiver coil and another output terminal of the AC-to-DC converter. One or more capacitive shields can be positioned between the receiver coil and an interface surface of the receiver device.
Abstract:
A touch sensitive device that detects the occurrence of an electrostatic discharge event on the device by analyzing one or more ESD sensors located in various locations on the touch sensitive device is provided. A touch controller can scan touch nodes on the touch sensitive device while simultaneously scanning one or more ESD sensors to detect if a possible ESD event has occurred during the acquisition of a touch image. If an ESD event has occurred during the acquisition of touch data, the touch controller can act to either ignore the data, or compensate the data to account for effects on the touch data caused by the ESD event.