Abstract:
Wi-Fi link health monitoring by a wireless device. Signal strength (e.g., RSSI) of a Wi-Fi link may be monitored. If the signal strength is low, further link quality metrics may be monitored. If it is determined that health of the Wi-Fi link is poor based on monitoring signal strength and other link quality metrics, roaming to a different Wi-Fi network may be performed, the Wi-Fi link may be disconnected, and/or an application processor of the wireless device may be woken.
Abstract:
A system and method for selecting a network interface for a communication device having at least two radio physical interface, to improve communications by the communication device. A configuration of the communication device is determined, where a first radio physical interface is designated as a primary interface and active, and a second radio physical interface as idle. A networking subsystem of the operating system executes a state machine configured to monitor network conditions and associated performance parameters of the at least two radio physical interfaces, to automatically outrank the second radio physical interface over the first radio physical interface as the primary interface.
Abstract:
A device implementing the subject system may include at least one processor configured to receive, by a first system process, a first network address that corresponds to a domain name that was resolved by a second system process, the resolving having been responsive to a resolution request therefor by an application process. The at least one processor may be further configured to receive, by the first system process, a second network address for which a network connection was opened by the application process. The at least one processor may be further configured to, responsive to determining that the application process opened a network connection for a network address for which the application process did not provide, to the second system process, a resolution request for the corresponding domain name, provide, by the first system process, an indication of the network address in conjunction with an indication of the application process.
Abstract:
A user equipment (UE) passively determines the presence of a cellular network bottleneck in a downlink channel and may take appropriate actions to mitigate the bottleneck. The UE may analyze the transport block size (TBS) of slots of received downlink traffic and assign states the to various slots based on this analysis. Based on these assigned states, the UE may identify a burst of network traffic from network traffic received from the cellular network, and the UE may also determine the burst duration as well as a busy estimation. The UE may determine that the cellular network is experiencing a bottleneck based at least in part on the burst duration and the busy estimation.
Abstract:
Some embodiments of the invention provide a novel architecture for debugging devices. This architecture includes numerous devices that without user intervention automatically detect and report bug events to a set of servers that aggregate and process the bug events. When a device detects a potential bug event, the device in some embodiments generates a description of the potential bug event, and sends the generated description to the server set through a network. In addition to generating such a description, the device in some embodiments directs one or more of its modules to gather and store a collection of one or more data sets that are relevant to the potential bug event, in case the event has to be further analyzed by the server set. In the discussion below, the generated bug-event description is referred to as the event signature, while the gathered collection of data sets for an event is referred to as the event's data archive. The server set aggregates and processes the bug-event signatures that it receives from the various devices. For only a subset of the reported bug-event signatures, the server set then directs the devices that sent these signatures to also send the data archives that these devices have gathered and stored for the events associated with these signatures. These data archives can be further analyzed to identify the root causes of the bug events.
Abstract:
Disclosed herein is a technique for predicting network availability and quality specific to particular types of networks over a particular period of time. The prediction of network availability and quality is based on usage patterns associated with a user of a user device (e.g., a mobile computing device). Based on the prediction, delay-tolerant operations can be efficiently scheduled at the user device.
Abstract:
Embodiments for performing an anticipatory networking are provided. These embodiments include detecting an action taken by a user of a wirelessly-enabled device, an automated action of the wirelessly-enabled device, or a current condition of the device; learning what future operations the wirelessly-enabled device will likely need to perform in order to carry out the desired user action or device action; creating a user profile based on the learned information; and proactively performing, based on the user profile, certain downstream operations before the data corresponding to those operations is actually needed. In some embodiments, the anticipatory networking techniques disclosed herein essentially represent the confluence of networking concepts and machine learning concepts, and as such, enable wireless communications having reduced latency, while also improving network reliability and device performance.
Abstract:
This disclosure relates to techniques for using wireless link information from baseband to trigger application data activity. According to some embodiments, wireless link information from baseband may be received at an application processor of a wireless device. The wireless link information may indicate whether the wireless link is in a connected state or an idle state. Network activity timing for one or more application network activity requests may be selected based at least in part on the wireless link information. The application network activity may be initiated for the one or more application network activity requests according to the selected network activity timing.
Abstract:
Embodiments described herein relate to managing access to 5G cellular baseband resources for 5G-capable wireless devices. A wireless device can monitor application workloads by analyzing communication network performance requirements for a given application in-use or launching for future use along with system-level indications of overall device usage, battery level, and mobility status to determine whether access to 5G cellular baseband resources is recommended for an application. A 5G cellular baseband resource recommendation is provided for an application indicating a level of bandwidth in current use or expected for future use as well as a confidence metric in the bandwidth level indication. The 5G cellular baseband resource recommendation is used with additional device criteria to determine whether access to one or more 5G radio frequency bands is allowed.
Abstract:
A device implementing the subject system may include at least one processor configured to receive, by a first system process, a first network address that corresponds to a domain name that was resolved by a second system process, the resolving having been responsive to a resolution request therefor by an application process. The at least one processor may be further configured to receive, by the first system process, a second network address for which a network connection was opened by the application process. The at least one processor may be further configured to, responsive to determining that the application process opened a network connection for a network address for which the application process did not provide, to the second system process, a resolution request for the corresponding domain name, provide, by the first system process, an indication of the network address in conjunction with an indication of the application process.