Abstract:
This application relates to methods and apparatus for waterproofing an electronic device having an audio output. More particularly a method for dynamically forming an acoustic volume of air for a speaker component is disclosed. The dynamically formed acoustic volume creates a sealed volume of air that prevents moisture from entering a portion of the device that includes moisture sensitive components. By dynamically forming the acoustic volume during a blow forming operation, the acoustic volume can utilize unused space within the electronic device in a highly efficient manner by occupying small areas of unused space that would otherwise go unused.
Abstract:
A first electronic device optically communicates with a second electronic device. Each of the devices includes one or more optical transmitters, one or more optical receivers, and one or more lenses where each of the lenses includes at least a first and a second optical path that are optically isolated from each other. When the first electronic device transmits data to the second electronic device, an optical transmitter of the first electronic device transmits to an optical receiver of the second electronic device via the first optical paths of the lenses of the first and second electronic devices. Similarly, when the first electronic device receives data from the second electronic device, an optical receiver of the first electronic device receives from an optical transmitter of the second electronic device via the second optical paths of the lenses of the first and second electronic devices.
Abstract:
Electronic devices may be accidentally exposed to liquid during operation. To detect liquid intrusion events, an electronic device may be provided with one or more electronic liquid contact sensors. The liquid contact sensors may have electrodes. Control circuitry may make measurements across the electrodes such as resistance and capacitance measurements to detect the presence of liquid. Liquid contact sensor data may be maintained in a log within storage in the electronic device. The liquid contact sensor data can be used to display information for a user of the electronic device or can be loaded onto external equipment for analysis. Liquid contact sensor electrodes may be formed from metal traces on substrates such as printed circuits, from contacts in a connector, from contacts on an integrated circuit, or from other conductive electrode structures.
Abstract:
Power transfer systems including a direct current source and a plurality of outputs operable in several modes. A ground mode may couple an output to circuit ground and a current mode may couple the output to the direct current source. The power transfer system may also include a controller configured to iteratively select a pair of outputs from the plurality of outputs. Once a pair is selected, the controller may set a first output of the pair of outputs to the current mode and the second to ground mode for a determined duration. After the duration has passed, the controller may set the first output to the ground mode and the second output to the current mode for the same duration. Thereafter the controller may select another pair of outputs.
Abstract:
Connector adapters that may have a MagSafe connector receptacle and a Universal Serial Bus Type-C connector insert. This may allow MagSafe chargers to be used to charge devices having Universal Serial Bus Type-C connector receptacles. This also may provide the breakaway characteristic of a MagSafe connector system for a device that does not include a MagSafe connector receptacle. Other adapters may have other types of magnetic connector receptacles and connector inserts.
Abstract:
Methods, structures, and apparatus that limit the amount of dendritic growth and metal migration between contacts in order to prevent an erroneous detection of a connection and/or functional failure. One example may reduce dendritic growth and metal migration by limiting an amount of time that a connection detection voltage is applied to CC contacts of a USB Type-C connector when an electronic device is detecting a connection. This and other examples may further limit dendritic growth by not applying the connection detection voltage to the CC contacts for a first duration following a detection of a disconnection.
Abstract:
Power transfer systems including a direct current source and a plurality of outputs operable in several modes. A ground mode may couple an output to circuit ground and a current mode may couple the output to the direct current source. The power transfer system may also include a controller configured to iteratively select a pair of outputs from the plurality of outputs. Once a pair is selected, the controller may set a first output of the pair of outputs to the current mode and the second to ground mode for a determined duration. After the duration has passed, the controller may set the first output to the ground mode and the second output to the current mode for the same duration. Thereafter the controller may select another pair of outputs.
Abstract:
Methods, structures, and apparatus that limit the amount of dendritic growth and metal migration between contacts in order to prevent an erroneous detection of a connection and/or functional failure. One example may reduce dendritic growth and metal migration by limiting an amount of time that a connection detection voltage is applied to CC contacts of a USB Type-C connector when an electronic device is detecting a connection. This and other examples may further limit dendritic growth by not applying the connection detection voltage to the CC contacts for a first duration following a detection of a disconnection.
Abstract:
An energy harvesting component for use in a portable electronic device includes a housing, a mass element within the housing, an energy transducer positioned inductively proximate the mass element, and a coupling between the mass element and the housing. In a first mode, the energy harvesting component may convert mechanical energy from agitation of the portable electronic device to electrical energy for use by the electronic device and, in a second mode, the energy harvesting component may induce movement of the mass element to provide haptic feedback.
Abstract:
Electronic devices may be accidentally exposed to liquid during operation. To detect liquid intrusion events, an electronic device may be provided with one or more electronic liquid contact sensors. The liquid contact sensors may have electrodes. Control circuitry may make measurements across the electrodes such as resistance and capacitance measurements to detect the presence of liquid. Liquid contact sensor data may be maintained in a log within storage in the electronic device. The liquid contact sensor data can be used to display information for a user of the electronic device or can be loaded onto external equipment for analysis. Liquid contact sensor electrodes may be formed from metal traces on substrates such as printed circuits, from contacts in a connector, from contacts on an integrated circuit, or from other conductive electrode structures.