Abstract:
Transfer knowledge from auxiliary data for more inclusive machine learning models is provided. A method can include generating a common feature space comprising first data features, wherein the first data features are present in training data used to train a first machine learning model, and wherein the first data features are present in auxiliary data that are independent of the training data; generating a combined learned feature representation, the combined learned feature representation being representative of the first data features of the common feature space and second data features that are unique to the training data; and training a second machine learning model based on the combined learned feature representation.
Abstract:
Aspects of the subject disclosure may include, for example, system and apparatus that enable operations that may include receiving, by a processing system, project data defining a proposed machine learning (ML) project of an entity and storing the project data in a project database with other project data for other projects. The operations may further include extracting extracted features of the proposed project and, based on the extracted features, determining a clustering assignment for the proposed project. Determining the clustering assignment may comprise comparing information about the proposed project including the extracted features with information about the other projects and assigning the proposed project to a cluster including one or more projects having similar bias characteristics as the proposed project. The operations may further include determining a risk of potential bias for the proposed project and, based on the risk of bias, recommending a corrective action to reduce the risk of bias. Machine learning models may be used for project clustering and bias score determination and may be readily updated as new ML projects are evaluated. Other embodiments are disclosed.
Abstract:
Aspects of the disclosure include, for example, obtaining input data. Further embodiments include a determination of a fast path prediction for a first time period according to the input data based on a fast path model. Embodiments include providing instructions to deliver information to a user device according to the fast path prediction. Additional embodiments include obtaining additional input data. Embodiments include a determination of a slow path prediction for the first time period according to the input data and the additional input data based on a slow path model, retraining the fast path model according to the input data and the fast path prediction, and training the slow path model according to the slow path prediction. Embodiments include a determination of a fast path negative impact metric and determination of a slow path negative impact metric. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, embodiments receiving a notification of actions, determining a potential bias metric for the actions in response to analyzing the actions using a machine learning application, determining the potential bias metric for the actions is above a potential bias threshold for the actions, and adjusting the actions to mitigate potential bias in the actions according to the potential bias metric being above the potential bias threshold using the machine learning application. Further embodiments can include determining a potential bias metric for the adjusted actions in response to analyzing the adjusted actions using the machine learning application, determining the potential bias metric for the adjusted actions is below the potential bias threshold for the actions, and providing a notification that indicates to implement the adjusted actions. Other embodiments are disclosed.
Abstract:
Aspects of the disclosure include, for example, obtaining input data. Further embodiments include a determination of a fast path prediction for a first time period according to the input data based on a fast path model. Embodiments include providing instructions to deliver information to a user device according to the fast path prediction. Additional embodiments include obtaining additional input data. Embodiments include a determination of a slow path prediction for the first time period according to the input data and the additional input data based on a slow path model, retraining the fast path model according to the input data and the fast path prediction, and training the slow path model according to the slow path prediction. Embodiments include a determination of a fast path negative impact metric and determination of a slow path negative impact metric. Other embodiments are disclosed.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a process that reduces a sampling size of a total population of on-line social network users based on a comparison of seed information to a population of on-line social network users. The reduced sampling of on-line social network users is compared to a social graph of the on-line social network users, wherein the social graph is obtained from an algorithm applied to the reduced sampling of the on-line social network users. An outlier is determined in the reduced sampling of on-line social network users based on a characterizing of a cluster of social network users. Additional embodiments are disclosed.
Abstract:
Methods, systems, and products protect personally identifiable information. Many websites acquire the personally identifiable information without a user's knowledge or permission. Here, though, the user may control what personally identifiable information is shared with any website. For example, the personally identifiable information may be read from a header of a packet and compared to a requirement associated with a domain name.
Abstract:
A system to detect anomalies in internet protocol (IP) flows uses a set of machine-learning (ML) rules that can be applied in real time at the IP flow level. A communication network has a large number of routers equipped with flow monitoring capability. A flow collector collects flow data from the routers throughout the communication network and provides them to a flow classifier. At the same time, a limited number of locations in the network monitor data packets and generate alerts based on packet data properties. The packet alerts and the flow data are provided to a machine learning system that detects correlations between the packet-based alerts and the flow data to thereby generate a series of flow-level alerts. These rules are provided to the flow time classifier. Over time, the new packet alerts and flow data are used to provide updated rules generated by the machine learning system.
Abstract:
A system to detect anomalies in internet protocol (IP) flows uses a set of machine-learning (ML) rules that can be applied in real time at the IP flow level. A communication network has a large number of routers equipped with flow monitoring capability. A flow collector collects flow data from the routers throughout the communication network and provides them to a flow classifier. At the same time, a limited number of locations in the network monitor data packets and generate alerts based on packet data properties. The packet alerts and the flow data are provided to a machine learning system that detects correlations between the packet-based alerts and the flow data to thereby generate a series of flow-level alerts. These rules are provided to the flow time classifier. Over time, the new packet alerts and flow data are used to provide updated rules generated by the machine learning system.
Abstract:
Methods, systems, and products protect personally identifiable information. Many websites acquire the personally identifiable information without a user's knowledge or permission. Here, though, the user may control what personally identifiable information is shared with any website.