摘要:
A reversibly deployable energy absorbing assembly includes a rigid support structure having at least one inlet and at least one outlet; a flexible covering sealingly engaged with the rigid support structure to define an inflatable interior region; a gas source in fluid communication with the at least one inlet; an inlet control valve positioned intermediate the gas source and the at least one inlet; and an actively controlled pressure relief valve in fluid communication with the at least one outlet. The inlet control valve and the pressure relief valve are adapted to provide a response suitable for use in vehicle impact management.
摘要:
A reconfigurable bi-stable device includes an elastically deformable panel laterally disposed between and connected to one or more mounting members directly or indirectly connected to opposing ends of the panel, with the panel maintained under compressive force along at least one vector extending between the opposing ends. The compressive force deforms the panel into a one of two stable deformed positions, with the device disposed such that the panel may be moved between each of the two stable deformed positions by application of manual force to one of two opposing faces of the panel. A first shape memory alloy (SMA) or piezo actuator member is connected to the panel, the actuator member being capable of moving the panel from a first one of the two stable deformed positions to a second one of the two stable deformed positions.
摘要:
An exhaust system configured for converting thermal energy to mechanical energy includes a source of thermal energy provided by a temperature difference between an exhaust gas having a first temperature and a heat sink having a second temperature that is lower than the first temperature. The exhaust system also includes a conduit configured for conveying the exhaust gas, a heat engine disposed in thermal relationship with the conduit and configured for converting thermal energy to mechanical energy, and a member disposed in contact with the conduit and configured for conducting thermal energy from the conduit to the heat engine. The heat engine includes a first element formed from a first shape memory alloy having a crystallographic phase changeable between austenite and martensite at a first transformation temperature in response to the temperature difference between the exhaust gas and the heat sink.
摘要:
A method of controlling an energy harvesting system that converts excess thermal energy into mechanical energy and includes a Shape Memory Alloy (SMA) member, includes obtaining current operational parameters of the energy harvesting system, such as a maximum temperature, a minimum temperature and a cycle frequency of the SMA member. The current operational parameters are compared to a target operating condition of the energy harvesting system to determine if the current operational parameters are within a pre-defined range of the target operating condition. If the current operational parameters are not within the pre-defined range of the target operating condition, then a heat transfer rate to, a heat transfer rate from or a cycle frequency of the SMA member is adjusted to maintain operation of the energy harvesting system within the pre-defined range of the target operating condition to maximize efficiency of the energy harvesting system.
摘要:
Disclosed herein is a programmable shim 28 for positioning a work piece 12 comprising a first plate 30; an optional reference frame 32; and an actuator 34 in operative communication with the first plate 30 and the reference frame 32. Disclosed herein too is a method of aligning a work piece 12 comprising disposing the work piece 12 upon a first plate 30 of a programmable shim 28; activating an actuator 34 with an external stimulus; wherein the actuator 34 is in operative communication with the first plate 30; and displacing the work piece 12.
摘要:
An exhaust system configured for converting thermal energy to mechanical energy includes a source of thermal energy provided by a temperature difference between an exhaust gas having a first temperature and a heat sink having a second temperature that is lower than the first temperature. The exhaust system also includes a conduit configured for conveying the exhaust gas, a heat engine disposed in thermal relationship with the conduit and configured for converting thermal energy to mechanical energy, and a member disposed in contact with the conduit and configured for conducting thermal energy from the conduit to the heat engine. The heat engine includes a first element formed from a first shape memory alloy having a crystallographic phase changeable between austenite and martensite at a first transformation temperature in response to the temperature difference between the exhaust gas and the heat sink.
摘要:
An energy harvesting system comprises a first region having a first temperature and a second region. A conduit is located at least partially within the first region. A heat engine configured for converting thermal energy to mechanical energy includes a shape memory alloy forming at least one generally continuous loop. The shape memory alloy is disposed in heat exchange contact with the first region and the second region. The shape memory alloy is driven to rotate around at least a portion of the conduit by the response of the shape memory alloy to the temperature difference between the first region and the second region. At least one pulley is driven by the rotation of the shape memory alloy, and the at least one pulley is operatively connected to a component to thereby drive the component.
摘要:
A shape memory alloy (SMA) heat engine includes a first rotatable pulley, a second rotatable pulley, and an SMA material disposed about the first and second rotatable pulleys and between a hot region and a cold region. A method of starting and operating the SMA heat engine includes detecting a thermal energy gradient between the hot region and the cold region using a controller, decoupling an electrical generator from one of the first and second rotatable pulleys, monitoring a speed of the SMA material about the first and second rotatable pulleys, and re-engaging the driven component if the monitored speed of the SMA material exceeds a threshold. The SMA material may selectively change crystallographic phase between martensite and austenite and between the hot region and the cold region to convert the thermal gradient into mechanical energy.
摘要:
A shape memory alloy (SMA) heat engine includes a first rotatable pulley, a second rotatable pulley, and an SMA material disposed about the first and second rotatable pulleys and between a hot region and a cold region. A method of starting and operating the SMA heat engine includes detecting a thermal energy gradient between the hot region and the cold region using a controller, decoupling an electrical generator from one of the first and second rotatable pulleys, monitoring a speed of the SMA material about the first and second rotatable pulleys, and re-engaging the driven component if the monitored speed of the SMA material exceeds a threshold. The SMA material may selectively change crystallographic phase between martensite and austenite and between the hot region and the cold region to convert the thermal gradient into mechanical energy.
摘要:
An energy harvesting system for converting thermal energy to mechanical energy includes a heat engine that operates using a shape memory alloy active material. The shape memory alloy member may be in thermal communication with a hot region at a first temperature and a cold region at a second temperature lower than the first temperature. The shape memory alloy material may be configured to selectively change crystallographic phase between martensite to austenite and thereby one of contract and expand in response to the first and second temperatures. A thermal conduction element may be in direct contact with the SMA material, where the thermal conduction element is configured to receive thermal energy from the hot region and to transfer a portion of the received thermal energy to the SMA material through conduction.