摘要:
Providing for base station (BS) acquisition in semi-planned or unplanned wireless access networks is described herein. By way of example, a signal preamble can be dynamically allocated to wireless signal resources, such that the preamble is scheduled to different resource(s) across different cycles of the signal. Dynamic allocation can be pseudo-random, based on collision feedback, or determined by a suitable algorithm to mitigate collisions from a dominant interferer. In addition, dynamic scheduling can be particular to a type of BS to significantly reduce collisions from BSs of disparate types. In at least one aspect, a preamble resource can be sub-divided into multiple frequency sub-carrier tiles. Control channel information can be transmitted on each tile of a group of such tiles, further mitigating effects of a dominant interferer on a subset of the tile group.
摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a first station (e.g., a base station or a terminal) may receive a message sent by a second station to request reduction of interference on at least one resource. In response to receiving the message, the first station may determine a first transmit power level to use for the at least one resource based on one or more factors such as a priority metric sent in the message, the buffer size at the first station, etc. The first station may send a power decision pilot on the at least one resource at a second transmit power level determined based on the first transmit power level.
摘要:
Techniques for sending control information in a wireless communication system are described. A control segment may include L≧1 tiles, and each tile may include a number of transmission units. A number of control resources may be defined and mapped to the transmission units for the control segment. For symmetric mapping, multiple sets of S≧1 control resources may be formed, and each batch of L consecutive sets of S control resources may be mapped to S transmission units at the same location in the L tiles. For localized mapping, S>1, and each set of S control resources may be mapped to a cluster of S adjacent transmission units in one tile. For distributed mapping, S=1, and each control resource may be mapped to one transmission unit in one tile. For diversity, each control resource may be mapped to multiple (e.g., three) transmission units in at least one tile.
摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a serving base station may send a message to a terminal to trigger short-term interference mitigation. In response, the terminal may send a message to request at least one interfering base station to reduce interference on at least one resource. Each interfering base station may determine a transmit power level to be used for the at least one resource and may send a pilot at this transmit power level. The terminal may estimate the channel quality of the at least one resource based on at least one pilot received from the at least one interfering base station. The terminal may send information indicative of the estimated channel quality to the serving base station. The serving base station may send a data transmission on the at least one resource to the terminal.
摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a first station (e.g., a base station or a terminal) may send a first message to at least one interfering station to request reduction of interference on at least one resource. The first station may send the first message in anticipation of receiving data on the at least one resource. An interfering station may receive the first message from the first station and may reduce interference on the at least one resource by reducing its transmit power and/or by steering its power in a direction different from the first station. The first station may thereafter receive data from a second station on the at least one resource. The techniques may be used for data transmission on the forward and reverse links.
摘要:
Techniques for transmitting signaling with localized spreading are described. In one design, a transmitter (e.g., a base station) spreads multiple signaling symbols to obtain multiple sets of output symbols and further maps the multiple sets of output symbols to multiple time frequency blocks. The spreading may be localized to each time frequency block. Prior to the spreading, the transmitter may scale the multiple signaling symbols with multiple gains determined based on the transmit power for these signaling symbols. The transmitter may scramble the scaled signaling symbols to obtain scrambled symbols and may spread the scrambled symbols to obtain the multiple sets of output symbols. The transmitter may map each set of output symbols to a respective time frequency block.
摘要:
Superframe preamble structures for wireless communication systems are provided. The preamble can include system determination information, which can improve acquisition performance. The superframe structures can allow efficient determination of flexible parameters that determine preamble structure. The superframe structures can also facilitate quick paging capacity to scale with bandwidth.
摘要:
Systems and methodologies are described that provide techniques for performing adjustments for delta-based power control and interference management in a wireless communication system. A terminal can utilize one or more delta-based power control techniques described herein upon engaging in a reverse link transmission after a predetermined period of silence or after receiving indications of interference from neighboring access points. A delta value can be computed through open-loop projection, based on which transmission resources such as bandwidth and/or transmit power can be increased or decreased to manage interference caused by the terminal. A delta value, other feedback from the terminal, and/or indications of interference caused by the terminal can also be communicated as feedback to a serving access point to allow the access point to assign transmission resources for the terminal.
摘要:
Aspects describe a Fast Hadamard Transform that is common to multiple mobile devices. A scrambled sequence produced by the Fast Hadamard Transform can be utilized to decode access-based handoff probes from multiple terminals within a wireless communications system. A Walsh Sequence can be scrambled with a common random sequence to produce a scrambled sequence. At least a portion of the scrambled sequence is included in an access probe.
摘要:
Systems and methodologies are described that provide techniques for performing adjustments for delta-based power control and interference management in a wireless communication system. A terminal can utilize one or more delta-based power control techniques described herein upon engaging in a reverse link transmission after a predetermined period of silence or after receiving indications of interference from neighboring access points. A delta value can be computed through open-loop projection, based on which transmission resources such as bandwidth and/or transmit power can be increased or decreased to manage interference caused by the terminal. A delta value, other feedback from the terminal, and/or indications of interference caused by the terminal can also be communicated as feedback to a serving access point to allow the access point to assign transmission resources for the terminal.