Abstract:
In an embodiment, a magnetic field sensor comprises a substrate and a first magnetoresistive element supported by the substrate. The magnetic field sensor also includes a second magnetoresistive element supported by the substrate and coupled in series with the first magnetoresistive element to form a voltage node between the first and second magnetoresistive elements, and at which an output voltage is provided that changes in response to an external magnetic field. The magnetic field sensor also includes a magnetic source that produces a local magnetic field having a strength sufficient to bias the first magnetoresistive element to a resistive value that is substantially resistant to changing in response to the external magnetic field. In embodiments, additional magnetoresistive elements are included to form an H-bridge circuit.
Abstract:
Methods and apparatus that can include a rotatable target to generate a sinusoidal signal in a magnetic field sensor, wherein the target includes a plurality of sinusoidal teeth to reduce angular error. A magnetic field sensor can be configured to determine a position of the target. In embodiments, a rotatable target to generate a sinusoidal signal in a magnetic field sensor can include a plurality of sinusoidal teeth and a number of harmonics to reduce angular error.
Abstract:
A magnetoresistance (MR) element includes a first stack portion comprising a first plurality of layers including a first spacer layer having a first thickness and a first material selected to result in the first stack portion having a first sensitivity to the applied magnetic field. The MR element also has a second stack portion comprising a second plurality of layers, including a second spacer layer having a second thickness to result in the second stack portion having a second sensitivity to the applied magnetic field. The first thickness may be different than the second thickness resulting in the first sensitivity being different than the second sensitivity.
Abstract:
Methods and apparatus for s sensor having magnetic field sensing elements coupled in a differential bridge and a signal processor configured to receive signals from the bridge to determine a distance from the magnetic field sensing elements to a magnet from flux line divergence of magnetic flux generated by the magnet.
Abstract:
A magnetoresistance element disposed upon a substrate can include a stack of layers. The stack of layers can include a first portion including a first bias layer structure for generating a first bias magnetic field with a first bias direction, and a first free layer structure disposed proximate to the first bias layer structure, wherein the first free layer structure is biased by the first bias magnetic field. The stack of layers can also include a second portion including a second bias layer structure for generating a second bias magnetic field with a second bias direction; and a second free layer structure disposed proximate to the second bias layer structure, wherein the second free layer structure is biased by the second bias magnetic field, and wherein the first bias direction and the second bias directions are opposite to each other.
Abstract:
A method of determining an error condition in a magnetic field sensor can include receiving a first bridge signal, the first bridge signal generated by a first full bridge circuit. The method can also include receiving a second bridge signal, the second bridge signal generated by a second full bridge circuit. The method can also include determining a bridge separation from the first bridge signal and the second bridge signal. The method can also include comparing a function of the bridge separation to a threshold value. The method can also include generating an error signal indicative of the error condition or not indicative of the error condition in response to the comparing.
Abstract:
A magnetic field sensor can sense a movement of an object along a path. A movement line is tangent to the path. The magnetic field sensor can include a semiconductor substrate. The semiconductor substrate can have first and second orthogonal axes orthogonal to each other on the first surface of the substrate. A projection of the movement line onto a surface of the semiconductor substrate is only substantially parallel to the first orthogonal axis. The magnetic field sensor can also include first, second, third, and fourth magnetic field sensing elements disposed on the substrate. The first and second magnetic field sensing elements have maximum response axes parallel to the first orthogonal axis and the second and fourth magnetic field sensing elements have maximum response axes parallel to the second orthogonal axis. Signals generated by the second and fourth magnetic field sensing elements can be used as reference signals.
Abstract:
An integrated circuit includes at least one first magnetic field sensing element including at least one first magnetoresistance element configured to provide an output signal of the integrated circuit in response to a detected magnetic field. The integrated circuit also includes at least one second magnetic field sensing element including at least one second magnetoresistance element configured to have a characteristic indicative of a stress condition. A method for detecting a stress condition in an integrated circuit is also provided.
Abstract:
Magnetic field sensors can sense speed of movement and direction of movement of a ferromagnetic object. Particular arrangements of magnetic field sensing elements within the magnetic field sensor can automatically cancel offset variations in the magnetic field sensing elements.
Abstract:
A magnetic field sensor includes a plurality of magnetoresistance elements, each having at least one characteristic selected to provide a respective, different response to an applied magnetic field, wherein each of the plurality of magnetoresistance elements is coupled in parallel. Illustrative characteristics selected to provide the respective responses include dimensions and/or construction parameters such as materials, layer thickness and order, and spatial relationship of the magnetoresistance element to the applied magnetic field. A method includes providing each of a plurality of magnetoresistance elements with at least one characteristic selected to provide a respective, different response to an applied magnetic field, wherein each of the plurality of magnetoresistance elements is coupled in parallel.