Abstract:
The present invention relates to a device for measuring grip strength including a basis; a cover coupled to the basis to form an enclosed pressure space separated from the outside; a cap disposed between the basis and the cover and configured to form a sensing space separated from the pressure space; magnets mounted on the cap or the basis to form a magnetic field; and a magnetic sensor for detecting change in the magnetic field. With this configuration, when measuring the grip strength of the user's hand, accuracy or sensitivity may be increased.
Abstract:
Aspects of this disclosure relate to force based on movement of magnetically sensitive material. In embodiments, first magnetically sensitive material and second magnetically sensitive material can be in an initial position. According to such embodiments, one or more sensors to detect force based on relative position of the first magnetically sensitive material and the second magnetically sensitive in a second position. Related systems and methods for force detection are disclosed.
Abstract:
A kingpin assembly includes a housing having a recess located therein, a kingpin having at least a portion located within the recess of the housing, wherein the kingpin is secured within the recess of the housing, and wherein the kingpin includes an axis extending along a length of the kingpin, and a sensor arrangement configured to sense a force exerted on the kingpin in a first direction that is substantially perpendicular to the longitudinal axis.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to facilitate a single pin load sensor coupled to a hitch receiver, the sensor to measure one or more loads on the hitch receiver. An example non-transitory computer readable storage medium comprising machine-readable instructions that, when executed, cause a processor to at least capture, via a camera coupled to a vehicle, an image of a hitch of the vehicle, analyze the image to determine position data of a mount of the hitch, and calculate an actual load on the hitch based on the position data.
Abstract:
A load determining system having a sensorized rolling element bearing in a hub unit for wheels. The bearing includes a first ring and a second ring as an inner and outer ring. The first and second ring may be the inner ring, the other ring being the outer ring. The system includes at least two magnetic sensors attached to the first ring interact with a target wheel attached to the second ring. The system includes a signal processing unit configured to receive the magnetic sensor output of the at least one magnetic sensor, to determine at least axial forces acting on the bearing based on the amplitude of the magnetic sensor output and to calculate averages value of the outputs of the at least two magnetic sensors and to calculate a logarithm of a ratio of the average values to determine a load acting on the bearing.
Abstract:
A stress mapping system and method is operable to determine and map stresses along a conduit. The system includes a tool movable along a conduit and having at least one sensing device for sensing characteristics of the conduit, and a processor operable to process an output of the at least one sensing device. Responsive to processing of the output by the processor, the processor is operable to determine stresses at a surface of the conduit. Responsive to the processing of the output of the at least one sensing device, and responsive to a determination of a location or position of the tool along the conduit, the system generates a map of determined stresses along the conduit. The map of determined stresses provides a visual representation of the stresses determined at and along the surface of the conduit.
Abstract:
The present invention provides a sensor including a tactile sensor and bending sensor and a method of making the same, of which the manufacturing cost is low, the production efficiency is high and the sensor sensitivity is improved. The present invention relates to a sensor including a tactile sensor and bending sensor composed of an elastomer containing a magnetic filler and a magnetic sensor that detects a magnetic change caused by deformation of the elastomer; and a method of making the same, of which the viscosity of the mixed solution of the thermosetting elastomer precursor solution with the magnetic filler is adjusted to a specified range.
Abstract:
A mechanical device is provided for amplifying relative displacement between first and second mechanical structures operatively connected to opposite sides of a bearing. The relative displacement is caused by a thrust load on the bearing. The device includes a first bracket portion attachable to the first mechanical structure. The device further includes a compliant mechanism which extends from the first bracket portion to make contact with the second mechanical structure. The compliant mechanism is configured such that a measurement end of the mechanism moves in response to relative displacement between the first and second mechanical structures. The compliant mechanism is further configured such that the movement of the measurement end amplifies the relative displacement. The device further includes a sensor which measures the mechanically amplified movement of the measurement end.
Abstract:
According to one embodiment, a pressure sensor includes a film part, and a sensing unit. A circumscribing rectangle circumscribing a configuration of a film surface of the film part has a first side, a second side, a third side connected to one end of the first side and one end of the second side, a fourth side connected to one other end of the first side and one other end of the second side, and a centroid of the circumscribing rectangle. The circumscribing rectangle includes a first region enclosed by the first side, line segments connecting the centroid to the one end of the first side, and to the one other end of the first side. The sensing unit includes sensing elements provided on a portion of the film surface overlapping the first region. Each sensing element includes a first, second magnetic layers, and a spacer layer.
Abstract:
A sensor arrangement comprises a carrier substrate and a ferroelectric layer disposed on the carrier substrate, wherein the sensor arrangement comprises means for reading the permittivity of the ferroelectric layer. The sensor arrangement is such that the ferroelectric layer is disposed in a crystalline manner on the carrier substrate. A method for producing the sensor arrangement and to use of the same is also disclosed.