摘要:
A TAMR head is disclosed with a triangular shaped plasmon antenna covered on two sides with a plasmon layer that generates an edge plasmon mode along a vertex of the two plasmon sides formed opposite a main pole layer. A plasmon shield (PS) is formed along the ABS and opposite the vertex to confine an electric field from the edge plasmon mode within a small radius of the edge plasmon tip thereby reducing the optical spot size on the magnetic medium and enhancing writability. An end of a waveguide used to direct input electromagnetic radiation to the plasmon antenna adjoins a PS side opposite the ABS. In one embodiment, a magnetic shield may be formed along the ABS and adjoins the PS so that a first PS section terminates at the ABS and faces the vertex while a second PS section is formed between the magnetic shield and waveguide end.
摘要:
Devices and methods are provided for heat-assisted magnetic recording (HAMR). In an illustrative example, a device includes a magnetic write pole having a convex pole tip; a magnetic opposing pole longitudinally displaced from the magnetic write pole; and a thermal-source component disposed proximate to the magnetic write pole and comprising a laterally elongated thermal-source peg disposed proximate to the convex pole tip.
摘要:
A subwavelength aperture includes a plurality of ridges that project from an aperture sidewall into the aperture opening. The ridges may be closely spaced such that the hot spots associated with the ridges are likewise closely spaced and create an elongated hot spot. The subwavelength aperture of the present invention may be adapted for use in a magnetic head of a hard disk drive for improved thermally assisted recording (TAR) of magnetic data bits. Such a magnetic head may include an optical resonant cavity that is fabricated within the magnetic head structure.
摘要:
A DFH (dynamic fly height) equipped TAMR (Thermal Assisted Magnetic Recording) write head uses optical-laser excited surface plasmons to locally heat a magnetic recording medium so that writing is enabled, while a DFH heater allows the head to fly very close to the magnetic medium. The write head includes an integral HDI sensor with a narrow track width for high spatial resolution. The HDI sensor is calibrated to obtain a relationship between its resistance and heater power. When the TAMR head is operated, measurement of high frequency voltage across the HDI sensor as a function of heater power indicates impending touchdowns, while use of the calibrated resistance curve enables the sensor to monitor temperature variations within components of the TAMR write head.
摘要:
A TAMR head is disclosed with a hybrid plasmon generator (hPG) formed between a waveguide and write pole at an ABS. The hPG has a planar bottom surface facing the waveguide and is comprised of a first non-noble metal layer with a peg portion adjoining the ABS. The peg tip has a thickness in a down track direction and a width in a cross track direction that may be reduced to about 10 nm to shrink the size of the optical spot that provides localized heating to a track and facilitates the write process. A second metal layer made of a noble metal is formed on and alongside the first metal layer and is recessed from the ABS to expose the peg, and has a top surface adjoining the write pole that may have side and top heat sinks.
摘要:
A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser generated plasmons in a plasmon generator to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. To enable the TAMR head to operate most effectively, the antenna is formed in three portions, a wide portion of uniform horizontal area, a tapered portion tapering towards the ABS of the write head and a narrow tip extending from the tapered portion to the ABS. The wide portion enhances coupling of optical radiation from a waveguide to surface plasmons generated within the generator, the tapered portion condenses and focuses the plasmons as they propagate towards the ABS and the narrow tip further focuses the surface plasmon field at the medium surface.
摘要:
A device to facilitate Thermally Assisted Magnetic Recording (TAMR), and a method for its manufacture, are described. One or more cylindrical lenses are used to focus light from a laser diode onto a wave-guide and a nearby plasmon antenna. Five embodiments of the invention are described, each one featuring a different way to couple the laser light to the optical wave-guide.
摘要:
A method by which portions of a wafer level fabrication can be selectively heated by means of the formation of a plasmon generating layers of specific size, shape, orientation and material on the fabrication and then illuminating the formation with electromagnetic radiation of such wavelength and polarization as will optimally be absorbed by the plasmon generating layers so as to generate plasmons therein. The generated plasmons thereupon produce thermal energy which is transferred to portions of the fabrication with which the plasmon generation layer has thermal contact. This method is particularly advantageous for producing multiple anneals and different magnetic pinning directions for the anti-ferromagnetic pinning layer in each of an array of GMR or TMR devices. In that process, the anti-ferromagnetic layer must be raised above its Curie temperature at which point it loses its anti-ferromagnetic properties and can have a magnetization imposed by application of an external magnetic field. The method can equally well be applied to any wafer level fabrication or deposited film fabrication in which it is desired to heat specific regions to obtain some specified result that is temperature dependent.
摘要:
A TAMR (Thermal Assisted Magnetic Recording) write head uses the energy of optical-laser generated plasmons in a plasmon antenna to locally heat a magnetic recording medium and reduce its coercivity and magnetic anisotropy. To enable the TAMR head to operate most effectively, the maximum gradient of the magnetic recording field should be concentrated in the small region being heated. Typically this does not occur because the spot being heated by the antenna is offset from the position at which the magnetic pole concentrates its magnetic field. The present invention incorporates a magnetic core within a plasmon antenna, so the antenna effectively becomes an extension of the magnetic pole and produces a magnetic field whose maximum gradient overlaps the region being heated by edge plasmons being generated in a conducting layer surrounding the antenna's magnetic core.
摘要:
An apparatus includes a first waveguide configured to focus an electromagnetic wave to a focal region, and a second waveguide defining an opening having an end positioned adjacent to the focal region, the second waveguide including a first metallic layer, and second and third layers positioned on opposite sides of the first metallic layer, wherein the first metallic layer has a first propagation constant larger than propagation constants of the second and third layers.