Abstract:
A superconducting nanowire single photon detector (SNSPD) device includes a substrate having a top surface, an optical waveguide on the top surface of the substrate to receive light propagating substantially parallel to the top surface of the substrate, a seed layer of metal nitride on the optical waveguide, and a superconductive wire on the seed layer. The superconductive wire is a metal nitride different from the metal nitride of the seed layer and is optically coupled to the optical waveguide.
Abstract:
Integrated-optics systems are presented in which an active-material stack is disposed on a coupling layer in a first region to collectively define an OA waveguide that supports an optical mode of a light signal. The coupling layer is patterned to define a coupling waveguide and a passive waveguide, which are formed as two abutting, optically coupled segments of the coupling layer. The lateral dimensions of the active-material stack are configured to control the shape and vertical position of the optical mode at any location along the length of the OA waveguide. The active-material stack includes a taper that narrows along its length such that the optical mode is located completely in the coupling waveguide where the coupling waveguide abuts the passive waveguide. In some embodiments, the passive layer is optically coupled with the OA waveguide and a silicon waveguide, thereby enabling light to propagate between them.
Abstract:
A bricked sub-wavelength periodic waveguide and a modal adapter, power divider and polarization splitter that use the waveguide. The waveguide includes blocks disposed periodically with a period “Lz” on a substrate and which alternate with a covering material. The first blocks have a width “ax” and the second blocks have a width “bx”, alternating on the substrate according to a period “Lx”, the second blocks being shifted a distance “dz” the first blocks in the direction of propagation. A modal adapter, a power divider and a polarization splitter all use the periodic waveguide and can operate with larger wave periods without leaving the sub-wavelength regime.
Abstract:
Provided are a Fourier lens, a method for designing a Fourier lens, and a schlieren apparatus. The Fourier lens includes a substrate and a plurality of cuboid waveguides. The plurality of waveguides are arranged on the substrate in parallel and spaced from each other at a preset interval. The material of the substrate and the material of the waveguides are all transparent to the working waveband of the Fourier lens. The preset interval is smaller than a quotient obtained by dividing a center wavelength of the working waveband by the refractive index of the substrate. The waveguide has a plurality of widths, and the waveguides of different widths correspond to different phase delays. The individual waveguides are arranged on the substrate according to phase delays required at different positions. According to the embodiments, the range of the working angle of the Fourier lens can be increased.
Abstract:
A novel waveguide with excellent optical properties can be easily produced. The photonic nanowires based waveguide has a) a plurality of nanowires; each nanowire having a ridge shape; b) the nanowires are supported by a support substrate or partially or totally free standing; c) the support substrate further supports interfacing waveguides disposed on both sides of the plurality of nanowires. The special concept of present invention allows to align a number of ridge-shaped nanowire that enables to control the amount of light being outside the solid waveguide in the evanescence field. Further, the design is compatible with solid waveguides and offers the possibility to confine (guide the light) within a multiple waveguide arrangement.
Abstract:
A compact, low-loss and wavelength insensitive Y-junction for submicron silicon waveguides. The design was performed using FDTD and particle swarm optimization (PSO). The device was fabricated in a 248 nm CMOS line. Measured average insertion loss is 0.28±0.02 dB across an 8-inch wafer. The device footprint is less than 1.2 μm×2μm, orders of magnitude smaller than MMI and directional couplers.
Abstract:
A SOI device may include a waveguide adapter that couples light between an external light source—e.g., a fiber optic cable or laser—and a silicon waveguide on the silicon surface layer of the SOI device. In one embodiment, the waveguide adapter is embedded into the insulator layer. Doing so may enable the waveguide adapter to be formed before the surface layer components are added onto the SOI device. Accordingly, fabrication techniques that use high-temperatures may be used without harming other components in the SOI device—e.g., the waveguide adapter is formed before heat-sensitive components are added to the silicon surface layer.
Abstract:
Passive components adapted for integration with at least one active semiconductor device, in an embodiment, comprise at least one metallic structure dimensioned and arranged to absorb and/or reflect a major fraction of incident electromagnetic radiation received at one or more wavelengths of a first group of wavelengths. This prevents radiation within the first group of wavelengths from being received and/or processed by the at least one active device. In an embodiment, one or more metallic structures are dimensioned and arranged to direct an amount of incident radiation, received at one or more wavelengths of a second group of wavelengths, sufficient to enable receiving or processing of incident radiation within the second group of wavelengths by the at least one active semiconductor device. In some embodiments, the passive component comprises a passive optical filter for use in spectroscopic applications, and the active semiconductor device is a detector or sensor.
Abstract:
An image sensor comprising a substrate and one or more of pixels thereon. The pixels have subpixels therein comprising nanowires sensitive to light of different color. The nanowires are functional to covert light of the colors they are sensitive to into electrical signals.
Abstract:
Herein presents an optical fiber microwire device, wherein the device comprising a silica tube, an optical fiber (2) inserted into the silica tube (1) and pigtailed at two sides, wherein the two ends of the silica tube (1) are fused with the optical fiber (2) to form a solid structure, or the two ends of the silica tube (2) are filled with silica rods (3), silica capillaries (4) or segments of optical fibers and fused to form a solid structure. The silica tube (1) together with the optical fiber (2) inside is then tapered to form a micro structure region. Therefore, the micro structure region is consisted of the tapered optical fiber as the microstructure core, tapered silica tube, and the air in between. This invention combine the manufacture of optical fiber microwire and the sealing process, avoiding the disadvantages of the conventional tapered optical fiber microwire, such as fragile mechanical structure, and sensitive to the outer environment variations.