摘要:
An example integrated circuit controller for use in a switching power supply includes a pulse width modulation (PWM) circuit and a timing circuit. The PWM circuit controls a switch to regulate an output of the power supply in response to a switch current flowing through the switch and in response to a clock signal having a switching period. The timing circuit provides the clock signal and increases the switching period in response to an on time of the switch exceeding a threshold time.
摘要:
A controller for use in a power converter includes a control circuit to be coupled to a current controller coupled to an energy transfer element. A first, second or third current is enabled in the current controller in response to the control circuit. The first current is substantially zero, the second current is greater than the third current, and the third current is greater than the first current. The third current only partially discharges a capacitance coupled to a terminal coupled between the energy transfer element and the current controller. A first feedback circuit coupled to the control circuit generates a first feedback signal after a full discharge pulse of current through the current controller. A second feedback circuit coupled to the control circuit generates a second feedback signal after a partial discharge pulse of current through the current controller.
摘要:
An output voltage sensor for use in a power converter controller includes a first pulse sampler circuit coupled to receive a feedback signal representative of an output of a power converter. The first pulse sampler circuit is coupled to capture a first peak voltage representative of a second peak of a ringing voltage of the feedback signal at a first time in the feedback signal. A second pulse sampler circuit is coupled to receive the feedback signal representative of the output of the power converter. The second pulse sampler circuit is coupled to capture a second peak voltage representative of the second peak of the ringing voltage of the feedback signal at a second time in the feedback signal. The output voltage sensor is coupled to output a change signal to a drive circuit of the power converter controller in response to the first and second peak voltages.
摘要:
An example controller for use in a power supply regulator includes a switch signal generator, a modulation circuit, and a multi-cycle modulator circuit. The modulation circuit modulates the duty cycle of a pulse width modulated switching signal to provide a fixed peak switching current in the switch during light load conditions and a variable peak switching current during load conditions other than the light load condition. The multi-cycle modulator circuit enables the switch signal generator to provide a switch signal uninterrupted if the load condition is other than the light load condition and disables the switch signal generator for a first time period and then enables the switch signal generator for a second time period when the load condition is the light load condition. The multi-cycle modulator circuit adjusts the first time period in response to the feedback signal to regulate the output.
摘要:
A reset voltage circuit for a forward power converter includes a reset capacitor and a memory capacitor. The reset capacitor is to be coupled to recycle energy from a primary winding of a transformer to an input bulk capacitor during a resetting of the transformer. The memory capacitor is to be coupled to store a first voltage equal to an input voltage of the power converter when the input voltage is at a steady-state value. The memory capacitor is further to set a voltage across the primary winding during the resetting of the transformer to a magnitude greater than or equal to the first voltage when the input voltage of the forward power converter drops below the steady-state value.
摘要:
An example controller for use in a power supply regulator includes a switch signal generator, a modulation circuit, and a multi-cycle modulator circuit. The modulation circuit modulates the duty cycle of a pulse width modulated switching signal to provide a fixed peak switching current in the switch during light load conditions and a variable peak switching current during load conditions other than the light load condition. The multi-cycle modulator circuit enables the switch signal generator to provide a switch signal uninterrupted if the load condition is other than the light load condition and disables the switch signal generator for a first time period and then enables the switch signal generator for a second time period when the load condition is the light load condition. The multi-cycle modulator circuit adjusts the first time period in response to the feedback signal to regulate the output.
摘要:
Techniques are disclosed to control a power converter with multiple output voltages. One example regulated power converter includes a an energy transfer element coupled between a power converter input and first and second power converter outputs. A switch is coupled between the power converter input and the energy transfer element such that switching of the switch causes a first output voltage to be generated at the first power converter output and a second output voltage to be generated at the second power converter output. A current in the energy transfer element is coupled to increase when a voltage across the energy transfer element is a difference between an input voltage at the power converter input and the first output voltage. The current in the energy transfer element is coupled to decrease when the voltage across the energy transfer element is a sum of the first and second output voltages.
摘要:
Techniques are disclosed to control a power converter with multiple output voltages. One example regulated power converter includes a an energy transfer element coupled between a power converter input and first and second power converter outputs. A switch is coupled between the power converter input and the energy transfer element such that switching of the switch causes a first output voltage to be generated at the first power converter output and a second output voltage to be generated at the second power converter output. A current in the energy transfer element is coupled to increase when a voltage across the energy transfer element is a difference between an input voltage at the power converter input and the first output voltage. The current in the energy transfer element is coupled to decrease when the voltage across the energy transfer element is a sum of the first and second output voltages.
摘要:
A circuit that provides a method and apparatus to actively balance capacitor leakage current from series stacked capacitors and disconnects itself when stacked capacitors are configured for doubler operation. In one embodiment, the active circuit includes high voltage low current transistors, such as for example a PNP bipolar transistor and an NPN bipolar transistor, that are configured in a sink-source voltage follower arrangement with the bases of the transistors connected to a voltage divider network and referenced to a fraction of a DC input voltage with a very high impedance, low dissipative resistor divider network. In one embodiment, the emitters of the PNP and NPN transistors are both tied to the connection point between capacitors in the stack and provide an active sink-source drive, which maintains the voltage at this point to be bounded by the input reference voltages of sink-source followers.
摘要:
Techniques are disclosed to sense a current in a circuit. For instance, current sense circuit according to the teachings of the present invention includes a current sense resistor coupled to an input of the current sense circuit. The current sense resistor is coupled to receive a current to be sensed from the input of the current sense circuit. The current to be sensed is converted to a current sense voltage. A first PN junction diode is coupled to the current sense resistor. A light emitting diode (LED) is coupled to the first PN junction diode to provide a current sense threshold substantially proportional to a difference between a forward voltage drop of the LED and a forward voltage drop of the first PN junction diode. The first PN junction diode is coupled to be biased from the forward voltage drop of the LED. The LED is coupled to the current sense resistor to generate an output when the current sense voltage from the current sense resistor reaches the current sense threshold.