Abstract:
The invention relates to an apparatus for heating a pipeline system, comprising at least two pipelines (1), along which in each case one electrical resistance heating element extends, wherein a potential close to the ground potential is set at each electrical resistance heating element at at least one end (3, 5), and the electrical resistance heating element is connected to a terminal of a DC source or to in each case one phase (7) of an n-phase AC source (9) at a position remote from this end (3, 5), where, when using an n-phase AC source (9), n is an integer equal to or greater than 2.
Abstract:
The present invention relates to a process for preparing deodorized 1,2-propanediol, to the use of the purified propanediol and to an apparatus for performing the process.
Abstract:
The invention relates to a pipeline system, comprising at least one pipeline loop (9) which is connected at one end to a converger (7) and at a second end to a distributor (5), wherein the converger (7) and the distributor (5) are arranged above one another, and when the converger (7) lies on top pressurized gas can be fed into the converger and the distributor (5) is connected to a drainage container (21), and when the distributor (5) lies on top pressurized gas can be fed into the distributor (5) and the converger (7) is connected to a drainage container (21), the drainage container (21) lying lower than the converger (7) and the distributor (5).The invention furthermore relates to a drainage container (21) for receiving a liquid flowing through a pipeline system (3), wherein the drainage container (21) is connected to the pipeline system (3) via an immersion pipe (33) projecting into the drainage container (21), wherein a siphon (41) is formed in the immersion pipe (33), between the pipeline system (3) and the drainage container (21), and the immersion pipe (33) is heatable, the siphon (41) being closed by solidified material (43) during operation of the pipeline system (3).
Abstract:
Method of maintaining or widening the long-term operating temperature range of a heat transfer medium and/or heat storage medium comprising a nitrite salt composition comprising, as significant constituents, an alkali metal nitrate or an alkaline earth metal nitrate or a mixture of alkali metal nitrate and alkaline earth metal nitrate and in each case an alkali metal nitrite and/or alkaline earth metal nitrite, wherein all or part of the nitrite salt composition is brought into contact with an additive composed of nitrogen and/or noble gases, in each case with elemental oxygen, the latter in an amount in the range from 0 to 20% by volume based on the total amount of the additive in combination with nitrogen oxides and/or compounds which generate nitrogen oxide.