Abstract:
A near-to-eye display device, includes: a display screen configured to display different images in a first time division mode, a polarization converter at a light-emitting side of the display screen and configured to convert emitted light of the different images displayed by the display screen into first circularly polarized light rays and second circularly polarized light rays in a second time division mode. Here the first circularly polarized light rays and the second circularly polarized light rays are opposite in rotation direction. The device further includes a polarization lens at a side facing away from the display screen of the polarization converter, and a focusing lens at a side facing away from the display screen of the polarization converter. The polarization lens and the focusing lens are configured to focus the first circularly polarized light rays and the second circularly polarized light rays at positions of different focal lengths.
Abstract:
A method for identifying body representation information in an image, includes: determining a skeleton-like line of a body in the image; and then performing identification of the body representation information according to the skeleton-like line. An apparatus, and a device for identifying body representation information in an image and a storage medium are also provided.
Abstract:
A display device includes a base substrate, a display panel, and a moveable structure located between the base substrate and the display panel, fixedly connected to the display panel and slidably connected to the base substrate; the display panel includes pixel areas and non-pixel areas between the pixel areas; in displaying phase, the moveable structure is configured to control the display panel to perform reciprocating motion with a preset cycle, the distance that the display panel moves in a single direction in the preset cycle is smaller than or equal to the width of a non-pixel area in the single direction, the preset cycle is the time required for the display panel to perform reciprocating motion once, and the time that the display panel moves in the single direction in the preset cycle is equal to the time that an image of the display panel is refreshed once.
Abstract:
A touch display panel is provided. The touch display panel includes a first substrate, and a second substrate opposite to the first substrate. The first substrate includes a base substrate, and an anode, an organic light emitting layer and a cathode formed on the base substrate. The cathode includes a plurality of first sub-electrodes, each of the plurality of first sub-electrodes is used as a touch electrode and applied with a touch scanning signal during a touch scanning stage and is used as a common electrode and applied with a common electrode signal during a display stage. The first substrate further includes a driving electrode layer disposed between the anode and the base substrate, the driving electrode layer is applied with the touch scanning signal during the touch scanning stage.
Abstract:
The embodiments of the present disclosure provide a touch screen and a fabricating method thereof, and a touch display device. The touch screen includes a touch sensor, a polymer film provided on the touch sensor, a λ/4 wave plate provided on the polymer film, and configured to cause a phase delay of light incident therein, so as to change a polarization state of the light, and a polarization film provided on the λ/4 wave plate, and configured to polarize light incident therein to generate polarized light.
Abstract:
A photovoltaic device and display equipment are provided. The photovoltaic device includes at least one photoelectric conversion sheet and a light guide plate, the at least one photoelectric conversion sheet arranged at a light exiting face side of the light guide plate.
Abstract:
A stress detection device and a detection method for a light-transmissive structure are disclosed. The stress detection device for a light-transmissive structure comprises: a light source, a first polarizer, a light intensity distribution state detection unit and a stress distribution state analysis unit; wherein the light source emits uniform polarized light; during detection, the first polarizer and the light sources are located at opposite sides of the light-transmissive structure, respectively; the light intensity distribution state detection unit is configured to obtain a light intensity distribution state of the polarized light emitted from the first polarizer; the stress distribution state analysis unit is configured to obtain a stress distribution state of the light-transmissive structure according to the light intensity distribution state.
Abstract:
A head-up display system and a display apparatus are provided in this disclosure, which relates to a technical field of displaying. The head-up display system includes a display unit; a light splitting unit provided on a light emitting side of the display unit and configured to transmit a first linearly polarized light and block a second linearly polarized light, light emitted by the display unit being converted into the first linearly polarized light after passing through the light splitting unit; a light-transmitting substrate; a first imaging unit provided on an optical path from the light splitting unit to the light-transmitting substrate and configured to be able to transmit and reflect the first linearly polarized light; and a second imaging unit provided on a side of the light-transmitting substrate away from the first imaging unit, and configured to reflect the first linearly polarized light transmitted through the light-transmitting substrate.
Abstract:
A display system based on a four-dimensional light field, and a display method therefor. The display system includes: a light source module (11), a display panel (12), and a light conduction component (13), wherein the light source module (11) includes a plurality of light sources arranged in an array; and the display panel (12) is a reflective liquid crystal display panel, and the display panel (12) includes a plurality of pixel units arranged in an array. Light emitted by the light sources in the light source module (11) irradiates the pixel units in the display panel (12); and the pixel units in the display panel (12) transmit the received light to a target position by means of the light conduction component (13).
Abstract:
The present disclosure discloses a near-eye display apparatus including: a first display screen and a second display screen; and a first collimating lens, a second collimating lens, a first polarization converter which converts emitted light of the first display screen into first circularly polarized light, a second polarization converter which converts emitted light of the second display screen into second circularly polarized light, a waveguide plate configured to conduct the first circularly polarized light and the second circularly polarized light, and a super lens which is located in a light emitting region of the waveguide plate.