Abstract:
The present invention relates to a process for producing surface-postcrosslinked water-absorbent polymer particles by coating of water-absorbent polymer particles having a content of residual monomers in the range from 0.03 to 15% by weight with at least one surface-postcrosslinker and thermal surface-postcrosslinking at temperatures in the range from 100 to 180° C.
Abstract:
A process for producing water-absorbing polymer particles with low caking tendency and high absorption under pressure, comprising polymerization of a monomer solution or suspension, drying of the resulting polymer gel, grinding, classifying, thermal surface postcrosslinking and coating with silicon dioxide, wherein the water-absorbing polymer particles have been coated, before, during or after the surface postcrosslinking with aluminum cations.
Abstract:
A process for producing water-absorbing polymer particles by polymerizing an aqueous monomer solution or suspension comprising at least one ethylenically unsaturated monomer which bears acid groups and has been at least partly neutralized by addition of a neutralizing agent, wherein the neutralizing agent is filtered prior to the addition.
Abstract:
A process for producing surface postcrosslinked superabsorbent particles, wherein an aqueous monomer solution with a small amount of initiator is polymerized to give a polymer gel, the resultant polymer gel is extruded through a die plate, the extruded polymer gel is dried on an air circulation belt drier having one or more zones, and the resultant polymer particles are ground and classified and then thermally surface postcrosslinked, wherein the temperatures of the drying gas supplied in the course of drying in the forward zones of the air circulation belt drier are from 120 to 160° C., and the speeds of the air supplied are from 1.2 to 3.0 m/s.
Abstract:
A fluid-absorbent article includes an upper liquid-pervious layer (A), a lower liquid-impervious layer (B), a fluid-absorbent core (C) between (A) and (B) including at least 60% by weight of non-surface postcrosslinked fluid-absorbent polymer particles and not more than 40% by weight of fibrous material, based on the sum of non-surface postcrosslinked fluid-absorbent polymer particles and fibrous material. An acquisition-distribution layer (D) between (A) and (C) includes at least 90% by weight of synthetic fibers and not more than 10% by weight of cellulose based fibers, based on the sum of synthetic fibers and cellulose based fibers. The basis weight of the acquisition-distribution layer (D) is at least 70 gsm. The fluid-absorbent polymer particles have a saline flow conductivity (SFC) of less than 5×10−7 cm3s/g and an AUHL of less than 15 g/g. Preferably the acquisition-distribution layer (D) is a non-woven web including a three dimensional network of fibers.
Abstract:
The invention relates to a process for producing long-term color stable superabsorbent polymer particles, comprising polymerization of a monomer solution, drying the resulting polymer gel, optionally grinding and classifying the resulting dried polymer gel and thermally surface post-crosslinking and cooling the resulting polymer particles, wherein a thermal surface post-cross-linker and hydrogen peroxide are added to the polymer particles prior to the thermal surface post-crosslinking.
Abstract:
The invention relates to a process for producing long-term color stable superabsorbent polymer particles, comprising polymerization of a monomer solution, wherein the monomer solution comprises at least 0.01% by weight of 1-hydroxyethane-1,1-diphosphonic acid or a salt thereof and at least 0.01% by weight of 2-hydroxy-2-sulfonatoacetic acid or a salt thereof.
Abstract:
A highly permeable superabsorbent is prepared by a process comprising polymerizing an aqueous monomer solution comprising a) at least one ethylenically unsaturated monomer which bears acid groups and is optionally at least partly in salt form, b) at least one crosslinker, c) at least one initiator, d) optionally one or more ethylenically unsaturated monomers copolymerizable with the monomers mentioned under a), and e) optionally one or more water-soluble polymers; drying the resulting polymer, optionally grinding the dried polymer and sieving the ground polymer, optionally surface postcrosslinking the dried and optionally ground and sieved polymer, wherein, after drying, grinding or sieving, and, if surface postcrosslinking is conducted, during or after this surface postcrosslinking, x-ray-amorphous aluminum hydroxide powder is added.
Abstract:
An absorbent core and an absorbent article respectively with improved properties, especially rewet performance, are disclosed. The absorbent core has at least two layers, wherein each layer comprising from 0 to 10% by weight fibrous material and from 90 to 100% by weight water-absorbent polymer particles, based on the sum of water-absorbent polymer particles and fibrous material. The surface-postcrosslinked water absorbent polymer particles within the upper layer have a sphericity of at least 0.89 and a CRC of at least 34 g/g. Preferably the water-absorbent polymer particles have a sphericity of at least 0.89 and the sum of the CRC and AUL (0.3 psi, 21 g cm−2) (EDANA 442.2-02) of the water absorbent polymer particles is at least 65 g/g.
Abstract:
The present invention relates to a process for producing surface-postcrosslinked water-absorbent polymer particles by coating of water-absorbent polymer particles having a content of residual monomers in the range from 0.03 to 15% by weight with at least one surface-postcrosslinker and thermal surface-postcrosslinking at temperatures in the range from 100 to 180° C.