Abstract:
A medical data processing method for determining a target set comprising at least one irradiation target in a patient's body for radiation therapy treatment by means of a treatment device constituted to treat the at least one target by means of one or more sub-beams during a treatment time, the one or more sub-beams constituting at least one treatment beam which is to pass through the at least one target in accordance with a treatment plan during the treatment time, the method comprising the following steps and being constituted to be executed by a computer: a) acquiring (S 1.1) critical area; b) acquiring (S 1.2) target data; c) acquiring (S 1.3) treatment beam criteria data (S 1.4); and e) determining (S4), based on the critical area data, the target data, the treatment beam constraint data and the treatment beam criteria data, target set data describing spatial information on at least one irradiation region.
Abstract:
A data processing method for determining data which are referred to as atlas data and comprise information on a description of an image of a general anatomical structure, wherein this image is referred to as the atlas image, the method comprising the following steps performed by a computer: acquiring patient data which comprise a description of a set of images of an anatomical structure of a set of patients, wherein the images are referred to as patient images and each patient image is associated with a parameter set which comprises one or more parameters which obtain when the patient images are generated, wherein the parameters influence representations of anatomical elements as expressed by image values in the patient images; acquiring model data which comprise information on a description of an image of a model of an anatomical structure of a (single or average or generic) patient which is referred to as the model image and is associated with the parameter set; determining matching transformations which are referred to as PM transformations and which are constituted to respectively match the set of patient images of the set of patients to the model image by matching images associated with the same parameter set; determining an inverse average transformation by applying an inverting and averaging operation to the determined PM transformations; and a) determining the atlas data by applying the determined inverse average transformation to the model data; or b) respectively applying the determined PM transformations to the respective patient images in order to determine matched patient images, averaging the matched patient images in order to determine an average matched patient image, and determining the atlas data by applying the determined inverse average transformation to the average matched patient image.
Abstract:
Disclosed is a computer-implemented method which encompasses registering a tracked imaging device such as a microscope having a known viewing direction and an atlas to a patient space so that a transformation can be established between the atlas space and the reference system for defining positions in images of an anatomical structure of the patient. Labels are associated with certain constituents of the images and are input into a learning algorithm such as a machine learning algorithm, for example a convolutional neural network, together with the medical images and an anatomical vector and for example also the atlas to train the learning algorithm for automatic segmentation of patient images generated with the tracked imaging device. The trained learning algorithm then allows for efficient segmentation and/or labelling of patient images without having to register the patient images to the atlas each time, thereby saving on computational effort.
Abstract:
Disclosed is a medical data processing method for determining an indicator relating to an injury of an anatomical structure (1) of a patient, wherein the method comprises executing, on at least one processor (5) of at least one computer (3), steps of: a) acquiring (S1) acceleration data describing an energy of a set of one or more signals in dependence on both time and frequency, the set of signals acquired by measuring the acceleration of the anatomical structure (1) over time; b) acquiring (S2) analysis data describing an analysis rule for determining at least one of b1) an overall energy level of at least one signal of the set of signals, b2) a correlation between at least two signals of the set of signals in the frequency domain, the at least two signals respectively measured at at least two different respective regions of the anatomical structure (1), or b3) a relationship between energies given for at least two different frequency ranges of at least one signal of the set of signals; c) determining (S3) indicator data describing the indicator based on the acceleration data and the analysis data.
Abstract:
Disclosed is a computer-implemented of adapting a biomechanical model of an anatomical body part of a patient to a current status of the patient. The method encompasses determination of a currently executed step of a workflow such as a medical intervention, the result of the determination serving as a basis for adapting and/or updating a biomechanical model of an anatomical body part to the corresponding current status of the patient. The determination of the current workflow step may also be used as basis for controlling an imaging device for tracking entities around the patient or for imaging the anatomical body part or acquiring further data or for urging the user to perform a specific action such as acquisition of information using a tracked instrument such as a pointer. The biomechanical model has been generated from atlas data. The data sets which are generated according to the current workflow step may additionally or alternatively serve as a basis for determining the current workflow step and/or adapting the further workflow.
Abstract:
The invention relates to a method of determining a radiotherapy treatment plan for radiotherapy treatment of a treatment body part of a patient's body. The method can include acquiring treatment target position data comprising treatment target position information describing the position of a treatment target to be treated by radiotherapy in the treatment body part. Statistic model target region position data is acquired, which describes the position of a model target region in a model body part corresponding to the treatment body part. Based on the treatment target data and the statistic model target region position data, irradiation region position data is determined that describes the position of an irradiation region to be treated by irradiation with treatment radiation in the treatment body part.
Abstract:
Disclosed is a medical data processing method for determining an indicator relating to an injury of an anatomical structure (1) of a patient, wherein the method comprises executing, on at least one processor (5) of at least one computer (3), steps of: a) acquiring (S1) acceleration data describing an energy of a set of one or more signals in dependence on both time and frequency, the set of signals acquired by measuring the acceleration of the anatomical structure (1) over time; b) acquiring (S2) analysis data describing an analysis rule for determining at least one of b1) an overall energy level of at least one signal of the set of signals, b2) a correlation between at least two signals of the set of signals in the frequency domain, the at least two signals respectively measured at at least two different respective regions of the anatomical structure (1), or b3) a relationship between energies given for at least two different frequency ranges of at least one signal of the set of signals; c) determining (S3) indicator data describing the indicator based on the acceleration data and the analysis data.
Abstract:
The invention relates to a method of determining a radiotherapy treatment plan for radiotherapy treatment of a treatment body part of a patient's body. The method can include acquiring treatment target position data comprising treatment target position information describing the position of a treatment target to be treated by radiotherapy in the treatment body part. Statistic model target region position data is acquired, which describes the position of a model target region in a model body part corresponding to the treatment body part. Based on the treatment target data and the statistic model target region position data, irradiation region position data is determined that describes the position of an irradiation region to be treated by irradiation with treatment radiation in the treatment body part.
Abstract:
The invention relates to a data processing method of determining a transformation for transforming medical image data into a positional reference system, the method being executed by a computer and comprising the following steps: a) acquiring, from a medical imaging apparatus (5), medical image data comprising medical image information describing a two-dimensional image of an anatomical body part (1); b) acquiring medical image selection data comprising medical image selection information describing a selection (4) from the medical image information; c) acquiring imaging apparatus characteristic data comprising imaging apparatus characteristic information describing an imaging characteristic of the medical imaging apparatus (5); d) determining, based on the medical image data, medical image selection data and imaging apparatus characteristic data, selection position data comprising selection position information describing a three-dimensional position of an anatomical structure (2) in the anatomical body part (1) corresponding to the selection from the medical image information.