Systems and methods for determining the quality of a reproduced (manufactured) optic device

    公开(公告)号:US10670495B2

    公开(公告)日:2020-06-02

    申请号:US16430060

    申请日:2019-06-03

    Abstract: A method for assessing the similarity between a power profile of a manufactured optic device and a nominal power profile upon which the power profile of the manufactured optic device is based. The method comprises measuring the power profile of manufactured optic device, identifying a region of interest from the measured power profile of manufactured optic device, and applying an offset to the measured power profile to substantially minimize a statistical quantifier for quantifying the similarity between the nominal power profile and the offset measured power profile. The method further comprises comparing the offset and the statistical quantifier to predefined quality control metrics, determining whether the measured power profile meets the predefined quality control metrics based, at least in part on the comparison. In exemplary embodiments, the method may further comprise determining whether to associate the manufactured optic device with another nominal power profile, if the measured power profile does not meet the predefined quality control metrics.

    Devices, Systems and/or Methods for Myopia Control

    公开(公告)号:US20200073147A1

    公开(公告)日:2020-03-05

    申请号:US16344318

    申请日:2017-10-25

    Abstract: The present disclosure is directed generally to a lens that provides a stop signal to a myopic eye, over a substantial portion of the spectacle lens that the viewer is using. The present disclosure is directed to devices, methods and/or systems of imposing a stop signal to eye growth, using a spectacle lens in conjunction with a micro lenslet array. The present disclosure is also directed to devices, methods and/or systems of modifying incoming light through spectacle lenses that utilizes chromatic cues to decelerate the rate of myopia progression. The present disclosure is directed to devices, methods and/or systems of imposing a stop signal to eye growth, using a spectacle lens in conjunction with a refractive optical element and/or diffractive optical element that offer conflicting or contradictory optical signals at a wavelength between 510 nm and 610 nm.

    Lenses, devices, methods and systems for refractive error

    公开(公告)号:US10534198B2

    公开(公告)日:2020-01-14

    申请号:US15352209

    申请日:2016-11-15

    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.

    Lenses, devices and methods for ocular refractive error

    公开(公告)号:US10209535B2

    公开(公告)日:2019-02-19

    申请号:US15399445

    申请日:2017-01-05

    Abstract: A lens for an eye having an optical axis and an aberration profile along its optical axis, the aberration profile having a focal distance and including higher order aberrations having at least one of a primary spherical aberration component and a secondary spherical aberration component. The aberration profile may provide, for a model eye with no aberrations and an on-axis length equal to the focal distance: a peak, first retinal image quality (RIQ) within a through focus range that remains at or above a second RIQ over the through focus range that includes said focal distance, where the first RIQ is at least 0.35, the second RIQ is at least 0.1 and the through focus range is at least 1.8 Diopters.

    Devices, systems and/or methods for myopia control

    公开(公告)号:US12061383B2

    公开(公告)日:2024-08-13

    申请号:US17698499

    申请日:2022-03-18

    CPC classification number: G02C7/086 G02C2202/16 G02C2202/20 G02C2202/24

    Abstract: The present disclosure is directed generally to a lens that provides a stop signal to a myopic eye, over a substantial portion of the spectacle lens that the viewer is using. The present disclosure is directed to devices, methods and/or systems of imposing a stop signal to eye growth, using a spectacle lens in conjunction with a micro lenslet array. The present disclosure is also directed to devices, methods and/or systems of modifying incoming light through spectacle lenses that utilizes chromatic cues to decelerate the rate of myopia progression. The present disclosure is directed to devices, methods and/or systems of imposing a stop signal to eye growth, using a spectacle lens in conjunction with a refractive optical element and/or diffractive optical element that offer conflicting or contradictory optical signals at a wavelength between 510 nm and 610 nm.

    Lenses, Devices, Systems and Methods for Refractive Error

    公开(公告)号:US20220342234A1

    公开(公告)日:2022-10-27

    申请号:US17706151

    申请日:2022-03-28

    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.

    Lenses, devices, methods and systems for refractive error

    公开(公告)号:US11333903B2

    公开(公告)日:2022-05-17

    申请号:US16682996

    申请日:2019-11-13

    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.

    Lenses, devices, methods and systems for refractive error

    公开(公告)号:US10948743B2

    公开(公告)日:2021-03-16

    申请号:US16226187

    申请日:2018-12-19

    Abstract: The present disclosure is directed to lenses, devices, methods and/or systems for addressing refractive error. Certain embodiments are directed to changing or controlling the wavefront of the light entering a human eye. The lenses, devices, methods and/or systems can be used for correcting, addressing, mitigating or treating refractive errors and provide excellent vision at distances encompassing far to near without significant ghosting. The refractive error may for example arise from myopia, hyperopia, or presbyopia with or without astigmatism. Certain disclosed embodiments of lenses, devices and/or methods include embodiments that address foveal and/or peripheral vision. Exemplary of lenses in the fields of certain embodiments include contact lenses, corneal onlays, corneal inlays, and lenses for intraocular devices both anterior and posterior chamber, accommodating intraocular lenses, electro-active spectacle lenses and/or refractive surgery.

    Systems and Methods for Determining the Quality of a Reproduced (Manufactured) Optic Device

    公开(公告)号:US20190391039A1

    公开(公告)日:2019-12-26

    申请号:US16430060

    申请日:2019-06-03

    Abstract: A method for assessing the similarity between a power profile of a manufactured optic device and a nominal power profile upon which the power profile of the manufactured optic device is based. The method comprises measuring the power profile of manufactured optic device, identifying a region of interest from the measured power profile of manufactured optic device, and applying an offset to the measured power profile to substantially minimize a statistical quantifier for quantifying the similarity between the nominal power profile and the offset measured power profile. The method further comprises comparing the offset and the statistical quantifier to predefined quality control metrics, determining whether the measured power profile meets the predefined quality control metrics based, at least in part on the comparison. In exemplary embodiments, the method may further comprise determining whether to associate the manufactured optic device with another nominal power profile, if the measured power profile does not meet the predefined quality control metrics.

Patent Agency Ranking