Abstract:
Robotic devices may be trained by a trainer guiding the robot along a target trajectory using physical contact with the robot. The robot may comprise an adaptive controller configured to generate control commands based on one or more of the trainer input, sensory input, and/or performance measure. The trainer may observe task execution by the robot. Responsive to observing a discrepancy between the target behavior and the actual behavior, the trainer may provide a teaching input via a haptic action. The robot may execute the action based on a combination of the internal control signal produced by a learning process of the robot and the training input. The robot may infer the teaching input based on a comparison of a predicted state and actual state of the robot. The robot's learning process may be adjusted in accordance with the teaching input so as to reduce the discrepancy during a subsequent trial.
Abstract:
Gesture recognition systems that are configured to provide users with simplified operation of various controllable devices such as, for example, in-home controllable devices. In one implementation, the gesture recognition system automatically configures itself in order to determine the respective physical locations and/or identities of controllable devices as well as an operating mode for controlling the controllable devices through predetermined gesturing. In some implementations, the gesture recognition systems are also configured to assign boundary areas associated with the controllable devices. Apparatus and methods associated with the gesture recognition systems are also disclosed.
Abstract:
Robotic devices may be operated by users remotely. A learning controller apparatus may detect remote transmissions comprising user control instructions. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The learning apparatus may monitor one or more wavelength (infrared light, radio channel) and detect transmissions from user remote control device to the robot during its operation by the user. The learning apparatus may be configured to develop associations between the detected user remote control instructions and actions of the robot for given context. When a given sensory context occurs, the learning controller may automatically provide control instructions to the robot that may be associated with the given context. The provision of control instructions to the robot by the learning controller may obviate the need for user remote control of the robot thereby enabling autonomous operation by the robot.
Abstract:
Apparatus and methods for arbitration of control signals for robotic devices. A robotic device may comprise an adaptive controller comprising a plurality of predictors configured to provide multiple predicted control signals based on one or more of the teaching input, sensory input, and/or performance. The predicted control signals may be configured to cause two or more actions that may be in conflict with one another and/or utilize a shared resource. An arbitrator may be employed to select one of the actions. The selection process may utilize a WTA, reinforcement, and/or supervisory mechanisms in order to inhibit one or more predicted signals. The arbitrator output may comprise target state information that may be provided to the predictor block. Prior to arbitration, the predicted control signals may be combined with inputs provided by an external control entity in order to reduce learning time.
Abstract:
Apparatus and methods for training of robotic devices. Robotic devices may be trained by a user guiding the robot along target trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control commands based on one or more of the user guidance, sensory input, and/or performance measure. Training may comprise a plurality of trials. During first trial, the user input may be sufficient to cause the robot to complete the trajectory. During subsequent trials, the user and the robot's controller may collaborate so that user input may be reduced while the robot control may be increased. Individual contributions from the user and the robot controller during training may be may be inadequate (when used exclusively) to complete the task. Upon learning, user's knowledge may be transferred to the robot's controller to enable task execution in absence of subsequent inputs from the user
Abstract:
Apparatus and methods for training of robotic devices. A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. User interface of the remote controller may be reconfigured based on the detected phenotype and/or operational changes.
Abstract:
Robotic devices may be operated by users remotely. A learning controller apparatus may detect remote transmissions comprising user control instructions. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The learning apparatus may monitor one or more wavelength (infrared light, radio channel) and detect transmissions from user remote control device to the robot during its operation by the user. The learning apparatus may be configured to develop associations between the detected user remote control instructions and actions of the robot for given context. When a given sensory context occurs, the learning controller may automatically provide control instructions to the robot that may be associates with the given context. The provision of control instructions to the robot by the learning controller may obviate the need for user remote control of the robot thereby enabling autonomous operation by the robot.
Abstract:
Robotic devices may be trained by a trainer guiding the robot along a target trajectory using physical contact with the robot. The robot may comprise an adaptive controller configured to generate control commands based on one or more of the trainer input, sensory input, and/or performance measure. The trainer may observe task execution by the robot. Responsive to observing a discrepancy between the target behavior and the actual behavior, the trainer may provide a teaching input via a haptic action. The robot may execute the action based on a combination of the internal control signal produced by a learning process of the robot and the training input. The robot may infer the teaching input based on a comparison of a predicted state and actual state of the robot. The robot's learning process may be adjusted in accordance with the teaching input so as to reduce the discrepancy during a subsequent trial.
Abstract:
Apparatus and methods for training of robotic devices. A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. User interface of the remote controller may be reconfigured based on the detected phenotype and/or operational changes.
Abstract:
Robotic devices may be trained by a trainer guiding the robot along a target trajectory using physical contact with the robot. The robot may comprise an adaptive controller configured to generate control commands based on one or more of the trainer input, sensory input, and/or performance measure. The trainer may observe task execution by the robot. Responsive to observing a discrepancy between the target behavior and the actual behavior, the trainer may provide a teaching input via a haptic action. The robot may execute the action based on a combination of the internal control signal produced by a learning process of the robot and the training input. The robot may infer the teaching input based on a comparison of a predicted state and actual state of the robot. The robot's learning process may be adjusted in accordance with the teaching input so as to reduce the discrepancy during a subsequent trial.