ITEM RECOMMENDATION SERVICE
    21.
    发明申请
    ITEM RECOMMENDATION SERVICE 有权
    项目建议服务

    公开(公告)号:US20110282758A1

    公开(公告)日:2011-11-17

    申请号:US13196066

    申请日:2011-08-02

    IPC分类号: G06Q30/00

    摘要: A computer-implemented recommendation service uses item-to-item relationship mappings to select items to recommend to the user. The item-to-item relationship mappings may reflect user-behavior-based (e.g., purchase-based) item relationships, content-based item relationships, or a combination thereof. In one embodiment, personalized recommendations are generated for a user by a process that comprises retrieving from the mapping, for each of a plurality of items of interest to the user, a respective related items list; weighting the related items lists based on information regarding the user's affinity for the corresponding items of interest; combining the weighted related items lists to form a pool of scored items, and selecting items from the pool to recommend to the user.

    摘要翻译: 计算机实现的推荐服务使用项目到项目关系映射来选择要向用户推荐的项目。 项目到项目关系映射可以反映基于用户行为的(例如,基于购买的)项目关系,基于内容的项目关系或其组合。 在一个实施例中,通过一个过程为用户生成个性化建议,该过程包括从用户对感兴趣的多个项目中的每一个检索相应的相关项目列表; 基于关于用户对相应兴趣项目的亲和度的信息对相关项目列表进行加权; 组合加权相关项目列表以形成计分项目池,以及从池中选择项目以向用户推荐。

    Collaborative recommendations using item-to-item similarity mappings
    24.
    发明授权
    Collaborative recommendations using item-to-item similarity mappings 有权
    使用项目到项目相似性映射的协同建议

    公开(公告)号:US06266649B1

    公开(公告)日:2001-07-24

    申请号:US09157198

    申请日:1998-09-18

    IPC分类号: G06F1760

    摘要: A recommendations service recommends items to individual users based on a set of items that are known to be of interest to the user, such as a set of items previously purchased by the user. In the disclosed embodiments, the service is used to recommend products to users of a merchant's Web site. The service generates the recommendations using a previously-generated table which maps items to lists of “similar” items. The similarities reflected by the table are based on the collective interests of the community of users. For example, in one embodiment, the similarities are based on correlations between the purchases of items by users (e.g., items A and B are similar because a relatively large portion of the users that purchased item A also bought item B). The table also includes scores which indicate degrees of similarity between individual items. To generate personal recommendations, the service retrieves from the table the similar items lists corresponding to the items known to be of interest to the user. These similar items lists are appropriately combined into a single list, which is then sorted (based on combined similarity scores) and filtered to generate a list of recommended items. Also disclosed are various methods for using the current and/or past contents of a user's electronic shopping cart to generate recommendations. In one embodiment, the user can create multiple shopping carts, and can use the recommendation service to obtain recommendations that are specific to a designated shopping cart. In another embodiment, the recommendations are generated based on the current contents of a user's shopping cart, so that the recommendations tend to correspond to the current shopping task being performed by the user.

    摘要翻译: 推荐服务根据已知对用户感兴趣的一组项目(例如用户先前购买的一组项目)向个别用户推荐项目。 在所公开的实施例中,服务用于向商家的网站的用户推荐产品。 该服务使用先前生成的表生成建议,该表将项目映射到“相似”项目列表。 表中反映的相似之处是基于用户群体的集体利益。 例如,在一个实施例中,相似性基于用户购买物品之间的相关性(例如,项目A和B是相似的,因为购买物品A的用户的购买物品B的相对较大的部分)。 该表还包括指示个别项目之间的相似度的分数。 为了产生个人建议,服务从表中检索与已知用户感兴趣的项目相对应的类似项目列表。 这些类似的项目列表被适当地组合成单个列表,然后将其排序(基于组合的相似性得分)并过滤以产生推荐项目的列表。 还公开了使用用户电子购物车的当前和/或过去内容来产生推荐的各种方法。 在一个实施例中,用户可以创建多个购物车,并且可以使用推荐服务来获得特定于指定购物车的推荐。 在另一个实施例中,基于用户购物车的当前内容生成推荐,使得建议倾向于对应于由用户正在执行的当前购物任务。