摘要:
A computer-implemented recommendation service uses item-to-item relationship mappings to select items to recommend to the user. The item-to-item relationship mappings may reflect user-behavior-based (e.g., purchase-based) item relationships, content-based item relationships, or a combination thereof. In one embodiment, personalized recommendations are generated for a user by a process that comprises retrieving from the mapping, for each of a plurality of items of interest to the user, a respective related items list; weighting the related items lists based on information regarding the user's affinity for the corresponding items of interest; combining the weighted related items lists to form a pool of scored items, and selecting items from the pool to recommend to the user.
摘要:
A computer-implemented service analyzes purchase histories and/or other types of behavioral data of users on an aggregated basis to detect and quantify associations between particular items represented in an electronic catalog. The detected associations are stored in a mapping structure that maps items to related items, and is used to recommend items to users of the electronic catalog.
摘要:
A computer-implemented service analyzes purchase histories and/or other types of behavioral data of users on an aggregated basis to detect and quantify associations between particular items represented in an electronic catalog. The detected associations are stored in a mapping structure that maps items to related items, and is used to recommend items to users of the electronic catalog.
摘要:
A recommendations service recommends items to individual users based on a set of items that are known to be of interest to the user, such as a set of items previously purchased by the user. In the disclosed embodiments, the service is used to recommend products to users of a merchant's Web site. The service generates the recommendations using a previously-generated table which maps items to lists of “similar” items. The similarities reflected by the table are based on the collective interests of the community of users. For example, in one embodiment, the similarities are based on correlations between the purchases of items by users (e.g., items A and B are similar because a relatively large portion of the users that purchased item A also bought item B). The table also includes scores which indicate degrees of similarity between individual items. To generate personal recommendations, the service retrieves from the table the similar items lists corresponding to the items known to be of interest to the user. These similar items lists are appropriately combined into a single list, which is then sorted (based on combined similarity scores) and filtered to generate a list of recommended items. Also disclosed are various methods for using the current and/or past contents of a user's electronic shopping cart to generate recommendations. In one embodiment, the user can create multiple shopping carts, and can use the recommendation service to obtain recommendations that are specific to a designated shopping cart. In another embodiment, the recommendations are generated based on the current contents of a user's shopping cart, so that the recommendations tend to correspond to the current shopping task being performed by the user.