Abstract:
An electronic device includes a clocking unit; a receiving unit; a reception control unit; and a date and time obtaining unit. The reception control unit makes the receiving unit receive first date and time information which is transmitted from a positioning satellite, the first date and time information indicating an elapsed time from a start of a week to an end of the week, and the reception control unit does not make the receiving unit receive second date and time information which is transmitted from the positioning satellite, the second date and time information indicating a week number. The date and time obtaining unit calculates an uncorrected date and time based on the first date and time information and a clocking unit week number which is a week number calculated from date and time counted by the clocking unit.
Abstract:
A radio-controlled timepiece includes the following. A timekeeping unit keeps date and time. A satellite radio wave receiving unit receives a transmitting radio wave of a positioning satellite. A receiving term setting unit sets a receiving term with the satellite radio wave receiving unit. A date/time obtaining unit obtains date/time information from the transmitting radio wave received by the satellite radio wave receiving unit. An elapsed time counting unit counts elapsed time from when the date and time is obtained by the date/time obtaining unit. A first judging unit judges whether the elapsed time is less than a first reference time determined based on a timekeeping error of the timekeeping unit and a format of a signal transmitted from the positioning satellite.
Abstract:
An antenna receiving apparatus includes, a first antenna; a second antenna that is synchronized with a frequency band different from the first antenna; a substrate that includes a receiving circuit connected to each of the first antenna and the second antenna; and a back lid that includes a conductor, wherein the conductor is in at least a portion of the back lid. The substrate includes a grounding surface of the first antenna. The substrate and the second antenna are positioned between the first antenna and the back lid. The second antenna is positioned on a side of the substrate opposite of the first antenna, and the second antenna is electrically connected to the conductor of the back lid and grounded.
Abstract:
An antenna receiving apparatus includes, a first antenna; a second antenna that is synchronized with a frequency band different from the first antenna; a substrate that includes a receiving circuit connected to each of the first antenna and the second antenna; and a back lid that includes a conductor, wherein the conductor is in at least a portion of the back lid. The substrate includes a grounding surface of the first antenna. The substrate and the second antenna are positioned between the first antenna and the back lid. The second antenna is positioned on a side of the substrate opposite of the first antenna, and the second antenna is electrically connected to the conductor of the back lid and grounded.
Abstract:
A radio-controlled timepiece, including: a radio wave reception unit that receives satellite waves and extracts an incoming code sequence formatted in a prescribed format from the received satellite waves; and a processor that generates in advance an expected code sequence that is expected to be part of the incoming code sequence and detects a matching code sequence segment, within the incoming code sequence, that has a degree of match with the expected code sequence that satisfies a prescribed matching condition, the processor determining a present date/time, as indicated by the satellite waves, in accordance with a timing at which the detected matching code sequence segment occurs within the incoming code sequence as measured by time kept by the timepiece.
Abstract:
A radio-controlled timepiece, including: a radio wave reception unit that receives satellite waves and extracts an incoming code sequence formatted in a prescribed format from the received satellite waves; and a processor that generates in advance an expected code sequence that is expected to be part of the incoming code sequence and detects the expected code sequence within the incoming code sequence by sequentially comparing the expected code sequence with the incoming code sequence, the processor determining a present date/time, as indicated by the satellite waves, in accordance with a timing at which the detected code sequence occurs within the incoming code sequence as measured by time kept by the timepiece, wherein the expected code sequence includes codes that change with a transmission period during which time-related information that includes satellite date/time contained in the satellite waves, which is formatted in the prescribed format, is transmitted.
Abstract:
In an information processing device, when a positional information acquiring unit acquires positional information calculated from GPS signals and the like, a movement area setting unit sets a movement area with a size corresponding to a distance between a current location and a destination. When the positional information acquiring unit acquires positional information indicating a current location after setting this movement area, a judgment unit judges whether the positional information is within the movement area. Then, as a result of this judgment, in a case of being within the movement area, a display control unit executes display control of a display unit so as to display on a map the positional information, and in a case of being outside of the movement area, so as not to display on the map the positional information.