Abstract:
A method for load balancing based on metadata in a network service header. The method includes receiving a packet or frame of a traffic flow, wherein the packet or frame has a payload and the network service header including metadata and service path information for the traffic flow identifying the service path, and the metadata comprises classification information of the packet or frame, extracting, by a service header processor of the load balancer, the classification information of the metadata from the packet or frame, and applying, by a load balancing function of the load balancer, a load balancing policy on the packet or frame based on the classification information of the metadata.
Abstract:
A method for augmenting metadata of a network service header is disclosed. The method includes receiving, at a first service node, a packet or frame of a traffic flow, wherein the packet has a payload and the network service header including a first metadata and a first service path information for the traffic flow, classifying, by the first service node, at least one of the payload and the first metadata to generate a second metadata different from the first metadata, and augmenting, by the first service node, the first metadata using the second metadata before forwarding the packet or frame to a second service node.
Abstract:
A method provided in one embodiment includes receiving, at a first network element, a first data packet of a data flow, wherein the data flow is associated with a subscriber. The method further includes receiving subscriber information associated with the subscriber, and encapsulating the subscriber information with the first data packet to form an encapsulated data packet. The method still further includes determining a service chain including one or more services to which the encapsulated data packet is to be forwarded, and forwarding the encapsulated data packet to the service chain.
Abstract:
An example method for network address translation (NAT) offload to network infrastructure for service chains in a network environment is provided and includes receiving a packet at a network infrastructure in a network comprising a plurality of service nodes interconnected through the network infrastructure, each service node executing at least one service function, identifying the packet as belonging to a first flow based on a cookie in a network service header of the packet that indicates a service chain that includes a sequence of service functions to be executed on the packet at the service nodes, determining that a service function in the service chain is to be offloaded from one of the service nodes to the network infrastructure for subsequent packets of the first flow, and executing the offloaded service function at the network infrastructure for subsequent packets of the first flow.
Abstract:
In one embodiment, a method includes receiving a packet associated with a flow at a network device, classifying the packet at the network device based on information received from a policy layer, inserting a Network Address Translation (NAT) indicator for the flow into the packet, and transmitting the packet in a service chain comprising network address translation. The NAT indicator is associated with the flows before and after network address translation to provide symmetry between the service chain and a return traffic service chain. An apparatus and logic are also disclosed herein.
Abstract:
Presented herein are service-function chaining techniques. In one example, a service controller in a network comprising a plurality of service nodes receives one is configured to identify one or more service-functions hosted by each of the service nodes. The service controller defines a service-function chain in terms of service-functions to be applied to traffic in the network and provides information descriptive of the service-function chain to a classifier node.
Abstract:
Presented herein are techniques useful in a network comprising a plurality of network nodes each configured to apply one or more service functions to traffic that passes through the respective network nodes. A network node receives packets encapsulated in a service header that includes information defining a variable set of context headers stacked into an association of metadata that is relevant to one or more service functions within a service path comprised of one or more network nodes. The network node interprets a forwarding state and a next-hop network node for the service path from the service header, and determines a service action or associated metadata from the set of context headers.
Abstract:
In one embodiment, a system and method are disclosed for sending a request and receiving a reply. The request contains a network service header including a flow label field and a target index field. The flow label field contains a set of available flow labels. The target index field includes a value indicating a target node. The reply contains information indicating which of the flow labels can be used to route a packet to each of the next hop nodes downstream from the device that sent the reply. This process can be repeated for other nodes on a path, and other paths in a service topology layer. The information determined by this process can be used to perform other necessary functionalities at the service topology layer.
Abstract:
An apparatus having logic elements to receive an incoming packet associated with a first service function chain; identify a next hop service function for the incoming packet as a non-reactive service function; create a duplicate packet; forward the duplicate packet to the non-reactive service function; and forward the incoming packet to a next reactive service function. An apparatus having logic to receive an incoming packet associated with a first service function chain (SFC), having a first service path identifier (SPI); determine that the incoming packet has a first service index (SI), and that a next-hop SI identifies a non-reactive service function (NRSF); receive a duplicate packet of the incoming packet; rewrite a service header of the duplicate packet to identify a second SFC having a second SPI; and alter the first SI of the incoming packet to identify a next reactive service function in the first SFC.
Abstract:
In one embodiment, a method includes receiving a trace request packet at a service node on a service chain, the trace request packet comprising a service index limit that remains constant for use in identifying at least one service node in the service chain to generate a trace report packet, and processing the trace request packet and determining whether to forward the trace request packet on the service chain or to generate the trace report packet based on a comparison of a service index to the service index limit in the trace request packet, wherein the trace report packet includes service function information of a plurality of service functions in the service chain, and the trace request packet is forwarded on the service chain according to a service path identifier and the service index.