Abstract:
A method provided in one embodiment includes receiving a first data packet of a data flow at a first classifier in which the first data packet includes a first identifier. The method further includes determining a second classifier associated with the first identifier in which the second classifier is further associated with at least one service chain of a service chain environment. The method still further includes forwarding the first data packet to the second classifier. The second classifier is configured to receive the first data packet, determine a particular service chain of the at least one service chain to which the first data packet is to be forwarded, and forward the first data packet to the particular service chain.
Abstract:
A method is provided in one example embodiment and may include communicating information between a plurality of network function virtualized (NFV) based applications; and creating at least one service chain using at least two of the plurality of NFV-based applications based on the information communicated between the plurality NFV based applications. In some instances, the information can be communicated using border gateway protocol (BGP) exchanges between the NFV-based applications. In some instances, the information can include at least one of: next-hop address information for one or more ingress points of a particular NFV-based application; one or more capabilities by which a particular NFV-based application can receive data on one or more ingress points; and a method by which one or more egress points of a previous NFV-based application in a particular service chain is to perform load balancing for a subsequent NFV-based application in the particular service chain.
Abstract:
A method is provided in one example and includes receiving network utilization data associated with an access network, determining an expected network utilization for a predetermined time period based upon the network utilization data, and determining pricing information for the predetermined time period based upon the expected network utilization. The pricing information includes at least one price rate for communication between at least one application and at least one client device utilizing the access network. The method further includes sending the pricing information to the at least one application.
Abstract:
In one embodiment, a load balancer receives a message from a tunnel termination gateway (TTG) associated with a mobile device. The load balancer may receive messages from a plurality of TTGs. A gateway node in a plurality of gateway nodes in which to send the message is determined. The load balancer then assigns a NSAPI for use by the gateway node. For example, the NSAPI may be associated with a tunnel that is generated between the TTG and GGSN. The load balancer ensures that the assigned NSAPI is not currently in use at the gateway node. Thus, no overlapping of NSAPIs may occur even though the load balancer is processing messages from multiple TTGs for multiple gateway nodes.
Abstract:
A data flow is received from a mobile network relating to a mobile subscriber. Subscriber data is received for the subscriber identifying a service path corresponding to the subscriber and at least one service policy corresponding to the subscriber, the service path including a set of network service nodes in a plurality of network service nodes. Packets of the data flow are routed according to the service path, the packets corresponding to a request for a resource. At least one packet is appended with service header data identifying the service policy. Each service node performs at least one service based on received request data, each service node in the set of service nodes performing a service defined in a service subscription of the subscriber. At least one particular service node in the set of network service nodes performs a particular service based at least in part on the service policy.
Abstract:
In one embodiment, a load balancer receives a message from a tunnel termination gateway (TTG) associated with a mobile device. The load balancer may receive messages from a plurality of TTGs. A gateway node in a plurality of gateway nodes in which to send the message is determined. The load balancer then assigns a NSAPI for use by the gateway node. For example, the NSAPI may be associated with a tunnel that is generated between the TTG and GGSN. The load balancer ensures that the assigned NSAPI is not currently in use at the gateway node. Thus, no overlapping of NSAPIs may occur even though the load balancer is processing messages from multiple TTGs for multiple gateway nodes.
Abstract:
A method is provided in one example and includes receiving at least one first input indicating at least one network condition associated with a first user device having a user associated therewith. The first user device has a first bearer channel established between the first user device and a gateway, and the first bearer channel has a first quality of service level. The method further includes determining whether to modify the first user device to a second quality of service level based upon the received at least one first input, and sending a first request to a first network element instructing the first network element to modify the first user device to the second quality of service level.
Abstract:
A method is provided in one example and includes receiving a request for a service from a requestor, an determining at least a first network element and at least a second network element required to satisfy the request from among a plurality of network elements. The method further includes triggering a coordinating of a work flow between the first network element and the second network element responsive to the request. The method still further includes translating communication messages exchanged between the first network element and the second network element from a first communication protocol format and a second communication protocol format.
Abstract:
A method is provided in one example and includes receiving a request from a first network element associated with a first network for establishing a first communication session between the first network element to a first user device associated with a second network. The request includes a first user identifier used to identify a first user associated with the first user device within the first network. The method further includes translating the first user identifier to a second user identifier in which the second user identifier is used to identify the first user within the second network. The method still further includes sending a first query including the second user identifier to a second network element, and receiving a first response message including quality of service information indicated by a policy associated with the second user identifier.
Abstract:
A method is provided in one example and includes receiving at least one first input indicating at least one network condition associated with a first user device having a user associated therewith. The first user device has a first bearer channel established between the first user device and a gateway, and the first bearer channel has a first quality of service level. The method further includes determining whether to modify the first user device to a second quality of service level based upon the received at least one first input, and sending a first request to a first network element instructing the first network element to modify the first user device to the second quality of service level.