Abstract:
The present disclosure describes a method for cloud resource placement optimization. A resources monitor monitors state information associated with cloud resources and physical hosts in the federated cloud having a plurality of clouds managed by a plurality of cloud providers. A rebalance trigger triggers a rebalancing request to initiate cloud resource placement optimization based on one or more conditions. A cloud resource placement optimizer determines an optimized placement of cloud resources on physical hosts across the plurality of clouds in the federated cloud based on (1) costs including migration costs, (2) the state information, and (3) constraints, wherein each physical host is identified in the constraints-driven optimization solver by an identifier of a respective cloud provider and an identifier of the physical host. A migrations enforcer determines an ordered migration plan and transmits requests to place or migrate cloud resources according to the ordered migration plan.
Abstract:
Systems and methods are described for allocating resources in a cloud computing environment. The method includes receiving a computing request, the request for use of at least one virtual machine and a portion of memory. In response to the request, a plurality of hosts is identified and a cost function is formulated using at least a portion of those hosts. Based on the cost function, at least one host that is capable of hosting the virtual machine and memory is selected.
Abstract:
In one embodiment, a device in a network aggregates values for a set of key performance indicators (KPIs) for a system the network to form a plurality of KPI states. The device associates a plurality of observed performance metric values from the system with the KPI states. The device constructs a machine learning-based decision tree. Internal vertices of the decision tree represent conditions for the plurality of observed performance metric values and leaves of the tree represent the KPI states. The device predicts a KPI state by using the machine learning-based decision tree to analyze live performance metric values streamed from the system. The device generates a proactive alert based on the predicted KPI state.
Abstract:
The present disclosure describes a method for cloud resource placement optimization. A resources monitor monitors state information associated with cloud resources and physical hosts in the federated cloud having a plurality of clouds managed by a plurality of cloud providers. A rebalance trigger triggers a rebalancing request to initiate cloud resource placement optimization based on one or more conditions. A cloud resource placement optimizer determines an optimized placement of cloud resources on physical hosts across the plurality of clouds in the federated cloud based on (1) costs including migration costs, (2) the state information, and (3) constraints, wherein each physical host is identified in the constraints-driven optimization solver by an identifier of a respective cloud provider and an identifier of the physical host. A migrations enforcer determines an ordered migration plan and transmits requests to place or migrate cloud resources according to the ordered migration plan.
Abstract:
Systems and methods are described for allocating resources in a cloud computing environment. The method includes receiving a computing request, the request for use of at least one virtual machine and a portion of memory. In response to the request, a plurality of hosts is identified and a cost function is formulated using at least a portion of those hosts. Based on the cost function, at least one host that is capable of hosting the virtual machine and memory is selected.
Abstract:
In one embodiment, a scale out policy service for processing a stream of messages includes a distributed stream processing computation system comprising distributed stream processing nodes, a distributed storage system, and a rules engine. A stream processing engine of the distributed stream processing computation system can receive the stream of messages comprising requests and/or events, and assign a first message to be processed by one or more distributed stream processing nodes based on one or more properties of the message. The one or more distributed stream processing nodes can be communicably connected to the distributed storage system and/or the rules engine to provide (1) an answer in response to the first message and/or (2) cause an action to be executed based on the first message.
Abstract:
A method for assisting evaluation of anomalies in a distributed storage system is disclosed. The method includes a step of monitoring at least one system metric of the distributed storage system. The method further includes steps of maintaining a listing of patterns of the monitored system metric comprising patterns which previously did not result in a failure within one or more nodes of the distributed storage system, and, based on the monitoring, identifying a pattern (i.e., a time series motif) of the monitored system metric as a potential anomaly in the distributed storage system. The method also includes steps of automatically (i.e. without user input) performing a similarity search to determine whether the identified pattern satisfies one or more predefined similarity criteria with at least one pattern of the listing, and, upon positive determination, excepting the identified pattern from being identified as the potential anomaly.
Abstract:
A method for assisting evaluation of anomalies in a distributed storage system is disclosed. The method includes monitoring at least one system metric of the system and creating a mapping between values and/or patterns of the system metric and one or more services configured to generate logs for the system. The method further includes detecting a potential anomaly in the system based on the monitoring, the potential anomaly being associated with a value and/or a pattern of the monitored system metric. The method also includes using the mapping to identify one or more logs associated with the potential anomaly, displaying a graphical representation of at least a part of monitoring the system metric, the graphical representation indicating the potential anomaly, and providing an overlay over the graphical representation, the overlay comprising an indicator of a number of the logs associated with the potential anomaly.
Abstract:
In one embodiment, a scale out policy service for processing a stream of messages includes a distributed stream processing computation system comprising distributed stream processing nodes, a distributed storage system, and a rules engine. A stream processing engine of the distributed stream processing computation system can receive the stream of messages comprising requests and/or events, and assign a first message to be processed by one or more distributed stream processing nodes based on one or more properties of the message. The one or more distributed stream processing nodes can be communicably connected to the distributed storage system and/or the rules engine to provide (1) an answer in response to the first message and/or (2) cause an action to be executed based on the first message.
Abstract:
The present disclosure relates to assignment or generation of reducer virtual machines after the “map” phase is substantially complete in MapReduce. Instead of a priori placement, distribution of keys after the “map” phase over the mapper virtual machines can be used to efficiently reducer tasks in virtualized cloud infrastructure like OpenStack. By solving a constraint optimization problem, reducer VMs can be optimally assigned to process keys subject to certain constraints. In particular, the present disclosure describes a special variable matrix. Furthermore, the present disclosure describes several possible cost matrices for representing the costs determined based on the key distribution over the mapper VMs (and other suitable factors).